Cho tam giác ABC nhọn . Vẽ BH ⊥ AC( H∈AC) .Vẽ CK ⊥ AB
( K∈AB) . BH cắt CK tại I .
CMR: 𝐴𝐵𝐻 = 𝐴𝐶𝐾
Cho tam giác ABC nhọn . Vẽ BH ⊥ AC( H∈AC) .Vẽ CK ⊥ AB
( K∈AB) . BH cắt CK tại I .
a) CMR: 𝐴𝐵𝐻 ̂ = 𝐴𝐶𝐾 ̂
b) Vẽ KE ⊥ 𝐴𝐶 tại E. CMR; 𝐴𝐾𝐸 ̂ = 𝐴𝐶𝐾 ̂
c) CMR: 𝐵𝐴𝐶 ̂ = 𝐶𝐾𝐸
mik chỉ cần câu b vs câu c thôi
a: \(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)
Cho tam giác ABC nhọn,các đường cao BH và CK(H thuộc AC,K thuộc AB).Vẽ các đường tròn đường kính AC,AB lần lượt cắt BH,CK tại D và E.CMR:tam giác ADE cân.
Kẻ đường cao AJ, trực tâm của tam giác là I. Khi đó AKIH là tứ giác nội tiếp nên \(\widehat{AKH}=\widehat{AIH}\) (Cùng chắn cung AH)
Lại có \(\widehat{AIH}=\widehat{ACB}\) (Cùng phụ với \(\widehat{HAI}\) ). Vậy thì \(\widehat{AKH}=\widehat{ACB}\)
Vậy thì \(\Delta AKH\sim\Delta ACB\left(g-g\right)\Rightarrow\frac{AK}{AC}=\frac{AH}{AB}\Rightarrow AK.AB=AH.AC\left(1\right)\)
Xét tam giác vuông ABE, áp dụng hệ thức lượng ta có AE2 = AK.AB. Tương tự AD2 = AH.AC (2)
Từ (1) và (2) suy ra AE = AD (đpcm)
Cho tam giác ABC nhọn,các đường cao BH và CK(H thuộc AC,K thuộc AB).Vẽ các đường tròn đường kính AC,AB lần lượt cắt BH,CK tại D và E.CMR:tam giác ADE cân.
các bạn giúp mình nha :))
Ta dễ dàng chứng minh được tam giác AKH đồng dạng tam giác ACB (g.g)
=> \(\frac{AH}{AB}=\frac{AK}{AC}\Rightarrow AH.AC=AK.AB\) (*)
Vì tam giác ADC và tam giác AEB lần lượt nội tiếp các đường tròn đường kính AC và AB nên là các tam
giác vuông, đồng thời các đường cao tương ứng là DH và EK
Áp dụng hệ thức về cạnh trong tam giác vuông được \(AD^2=AH.AC\) , \(AE^2=AK.AB\)
Từ (*) ta suy ra \(AD^2=AE^2\Rightarrow AD=AE\)
Vậy tam giác ADE là tam giác cân tại A. (đpcm)
Cho tam giác ABC cân tại A (ˆA<900)(A^<900). Vẽ BH⊥AC(H∈AC),CK⊥AB(K∈AB)BH⊥AC(H∈AC),CK⊥AB(K∈AB)
a) Chứng minh rằng AH = AK
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là phân giác của góc A
a)xét 2 tam giác vuông AHB và AKC có:
\(\widehat{A}\) là góc chung
AB=AC (ΔABC cân tại A)
⇒ΔAHB=ΔAKC (cạnh huyền góc nhọn)
⇒BH=CK (2 cạnh tương ứng)
b) xét 2 tam giác vuông AHI và AKI có:
AH=AK (ΔAHB=ΔAKC)
AI là cạnh chung
⇒ ΔAHI=ΔAKI (cạnh huyền cạnh góc vuông)
⇒\(\widehat{HAI}\) =\(\widehat{KAI}\) (2 góc tương ứng)
⇒AI là tia phân giác của\(\widehat{HAK}\)
cho tam giác ABC cân tại A, vẽ BH vuông AC ( H thuộc AC ) , CK vuông AB ( K thuộc AB ) . gọi I là giao điểm BH và CK chứng minh rằng
a) tam giác BCH = tam giác CBK
b) CK = BH
c) tam giác BIC cân tại I
a) Xét tam giác BCH và tam giác CBK có
góc KBC = góc HCB ( vì tam giác ABC cân )
BC : cạnh chung
góc BKC = CHB = 90 độ (GT )
Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )
b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )
=> BH = CK ( cặp cạnh tương ứng )
c) Vì tam giác BCH = tam giác CBK ( câu a )
=> CH = BK ( 2 cạnh tương ứng )
Xét tam giác KIB và tam giác HIC có :
Góc KIB = góc HIC ( 2 góc đối đỉnh ) (1)
BK = CH ( chứng minh trên ) (2)
góc IKB = góc IHC = 90 độ (GT ) (3)
Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )
=> IB = IC ( cặp cạnh tương ứng )
=> tam giác BIC cân tại I
CHO TAM GIÁC NHỌN ABC CÂN TẠI A VẼ BH VUÔNG GÓC VỚI AC (H Thuộc AC) CK vuông góc với AB ( K thuộc AB )
A/ Chứng minh rằng AH=AK
B/ Gọi I LÀ GIAO ĐIỂM CỦA BH VÀ CK. Chứng minh tam giác BIC cân
C/Chứng minh rằng AI là phân giác của góc A
Cho tam giác ABC, có AB = AC ( góc A < 90 độ ). Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K ( H thuộc AC, K thuộc AB ). a) chứng minh AH = AK. b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tam giác IBK = tam giác ICH. c) chứng minh AI là phân giác của góc A. d) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
Cho tam giác ABC, có AB = AC ( góc A < 90 độ ). Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K ( H thuộc AC, K thuộc AB ). a) chứng minh AH = AK. b) Gọi I là giao điểm của BH và CK. Chứng minh rằng tam giác IBK = tam giác ICH. c) chứng minh AI là phân giác của góc A. d) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.