cho A =2+2mũ 2 +2 mũ 3 +.....+ 2 mũ 60 chứng minh A chia hết cho 3 ,5,7
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
A = 2+2mũ +2 mũ 3 +.....+2 mũ 10 +2 mũ 11 +2 mũ 12
chứng minh A chia hết cho 2
A=2(1+2+22+...+212)
=> A chia hết cho 2
Vậy A chia hết cho 2(đpcm)
A = 2 + 22 + 23 + ... + 211 + 212
= 2.(1 + 2 + 22 + ... + 210 + 211) chia hết cho 2
Vậy A chia hết cho 2 (ĐPCM).
Giusp mình mí nhá nhá !!!!!!!!!!`~~~~~~~~~~~
Cho A = 2 + 2mũ 2 + 2 mũ 3 +.......+ 2 mũ 100 chứng minh A chia hết 15
Chứng tỏ rằng ; A= 2 + 2mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 90 chia hết cho 21
hãy chứng minh:
a.a.a.a.a.a chia hết cho 7
(ab+ba) chia hết cho 11
abcabc chia hết cho 11
2 +2mũ 2+2 mũ 3+......+2 mũ 2007+2 mũ 2008
\(ab+ba=(10a+b)+(10b+a)\)
\(=10a+b+10b+a\)
\(=11a+11b\)
\(=11\left(a+b\right)\)
\(a+b\inℕ\Rightarrow ab+ba⋮11\)
\(A=2+2^2+2^3+\cdot\cdot\cdot+2^{2008}\)
\(\Rightarrow2A=2^2+2^3+2^4+\cdot\cdot\cdot+2^{2009}\)
\(\Rightarrow2A-A=\left(2^2+\cdot\cdot\cdot2^{2009}\right)-\left(2+\cdot\cdot\cdot+2^{2008}\right)\)
\(\Rightarrow A=2^{2009}-2\)
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)\)chia hết cho \(3\).
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)\)chia hết cho \(7\).
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)chia hết cho \(15\).
Mà \(\left(15,7\right)=1\)nên \(A\)chia hết cho \(7.15=105\).
Cho A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +.....+ 2 mũ 60 . Chứng minh rằng A chia hết cho 3
\(A=2+2^2+...+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+...+2^{59}\right)⋮3\left(đpcm\right)\)
Số các số hạng của a là (60-1):1+1=60 số
ta thấy
a=2+22+23+...+260
a=(2+22)+(23+24)+...+(259+260)
a= 2*(1+2)+23*(1+2)+...259*(1+2)
a=2*3+23*3+...+259*3
a=2*(1+23+...+259)\(⋮\)3
Vậy a\(⋮\)3
k mình nha
chúc bn hok tốt
^- ^
cho A= 2+2 mũ 2 + 2 mũ 3 + .....+ 2 mũ 60 chứng minh A chia hết cho 3 ,7,105
A = 2 + 22 + 23 + ... + 260 chia hết cho 3
A = ( 2 + 22) + ... + ( 259 + 260 )
A = 2. ( 1 + 2 ) + ... + 259. ( 1 + 2 )
A = 2. 3 + ... + 259 . 3 chia hết cho 3 .
A = 2 + 22 + 23 +... + 260 chia hết cho 7
A = 2.( 1 + 2 + 4 ) + ... + 257 . ( 1 + 2 + 4 )
A = 2.7 + .. + 257 . 7 chia hết cho 7 .
Bạn coi lại phần chứng minh A chia hết cho 105 đi nhé !
Nếu bạn nào thấy đúng , nhớ k cho mình nha !
mk nghĩ là không phải chia hết cho 105 đâu
là chia hết cho 15 thì hợp lí hơn