Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2020 lúc 7:18

 y = ( a 2 - 2a + 4)x - 9

Ta có:  a 2  - 2a + 4 = a 2  - 2a + 1 + 3 = a - 1 2  + 3 > 0 ∀a

Vậy hàm số luôn đồng biến trên R

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 6 2019 lúc 8:17

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hoàng Liên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
qwerty
31 tháng 3 2017 lúc 10:06

Tập xác định : D = R. y' = => y' = 0 ⇔ x=-1 hoặc x=1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (- ; -1), (1 ; +).

Sách Giáo Khoa
Xem chi tiết
qwerty
31 tháng 3 2017 lúc 10:12

Tập xác định : D = [0 ; 2]; y' = , ∀x ∈ (0 ; 2); y' = 0 ⇔ x = 1.

Bảng biến thiên :

Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).

^^
Xem chi tiết
Aug.21
21 tháng 5 2019 lúc 8:15

Với \(x_1;x_2\)bất kì thuộc \(ℝ\)và \(x_1< x_2\) Ta có :

\(f\left(x_1\right)=\frac{1}{2}x_1+1\)

\(f\left(x_2\right)=\frac{1}{2}x_2+1\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=\frac{1}{2}\left(x_1-x_2\right)< 0\)

(Vì \(x_1< x_2\Rightarrow x_1-x_2< 0\))

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vậy hàm số đồng biến trên \(ℝ\)

Nguyễn Khoa Nguyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2019 lúc 13:27

TXĐ: D = [0; 2]

Giải bài 4 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số đồng biến

⇔ y’ > 0

⇔ 0 < x < 1.

+ Hàm số nghịch biến

⇔ y’ < 0

⇔ 1 < x < 2.

Vậy hàm số đồng biến trên khoảng (0; 1), nghịch biến trên khoảng (1; 2).

Nameless
Xem chi tiết
Quỳnh Như Trần Thị
Xem chi tiết
Akai Haruma
26 tháng 8 2021 lúc 14:12

Lời giải

$y'=3x^2+1>0$ với mọi $x\in\mathbb{R}$ nên hàm $y=x^3+x$ đồng biến trên $\mathbb{R}$

PT $\Leftrightarrow x^3+x=\sqrt[3]{2x+1}+2x+1$

Đặt $\sqrt[3]{2x+1}=t$ thì:
$x^3+x=t^3+t$

Vì hàm $y=x^3+x$ đồng biến nên $x^3+x=t^3+t\Leftrightarrow x=t$

$\Leftrightarrow x=\sqrt[3]{2x+1}$

$\Leftrightarrow x^3=2x+1$

Giải pt này dễ dàng có $x=-1; \frac{1\pm \sqrt{5}}{2}$