Cho khối hộp ABCD.A'B'C'D' có đáy là hình chữ nhật với A B = a 3 , A D = 7 . Hai mặt bên A B B ' A ' v à A D D ' A ' cùng tạo với đáy góc 45 0 cạnh bên của hình hộp bằng 1. Thể tích khối hộp là:
A. 7
B. 3 3
C. 5
D. 7 7
Câu 21: Cho khối hộp chữ nhật ABCD.A'B'C'D'. Biết AC=5, AB'=7, AD'=8. Tính thể tích khối hộp chữ nhật này?
Câu 36: Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, \(AD=a\sqrt{3}\). SA\(\perp\)(ABCD), SA=2a. Gọi (P) là mặt phẳng qua A và vuông góc với cạnh bên SC, cắt các cạnh bên SB,SC,SD lần lượt tại E,F,H. Tính thể tích khối chóp S.AEFH?
Cho khối hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, AB= 3 , AD= 7 . Hai mặt bên (ABB'A'),(ADD'A') tạo với đáy các góc lần lượt là 45 ° và 60 ° . Tính thể tích V của khối hộp đã cho biết độ dài cạnh bên bằng 1.
A. V = 3
B. V = 7 3
C. V = 3
D. V = 7
Cho khối hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, AB = 3 AD= 7 Hai mặt bên (ABB'A) (ADD'A') tạo với đáy các góc lần lượt là 45 o và 60 o . Tính thể tích V của khối hộp đã cho biết độ dài cạnh bên bằng 1.
A. V = 3
B. V = 7 3
C. V = 3
D. V = 7
Đáp án A
Theo định lí 3 đường vuông góc, ta có
Ta cũng có HKAM là hình chữ nhật, đặt A'H = h ta có
Cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, hình chiếu của A' lên đáy (ABCD) trùng với trung điểm của cạnh AD. Biết rằng AB = a, AD = 2a và thể tích hình hộp đã cho bằng 2 a 3 . Khoảng cách từ B đến mặt phẳng (A'DCB') bằng:
A. 2 a 6 B. 2 a 3
C. 3 a 3 D. a 2
Chọn D.
Gọi H là trung điểm của cạnh AD. Kẻ HI vuông góc với A'D tại I. Khi đó d(B,(A'DCB')) = d(A,(A'DCB')) = 2d(H,(A'DCB')) = 2HI.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=a, AD=2a, AA'=3a. Thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A'B'C'D' là
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a, AC' = 6 a. Thể tích khối hộp chữ nhật ABCD.A'B'C'D' bằng:
A. 3 a 3 3
B. 2 a 3 3
C. 2 a 3
D. 2 3 a 3
Phương pháp:
Công thức tính thể tích khối hộp chữ nhật ABCD.A'B'C'D' là V = AA'.AB.AD
Cách giải:
Ta có: (định lý Pitago)
Xét tam giác ACC’ vuông tại C ta có:
Chọn C.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông cạnh a và cạnh bên bằng 2a. Thể tích khối nón có đỉnh là tâm O của hình vuông A'B'C'D' và đáy là hình tròn ngoại tiếp hình vuông ABCD là:
A. πa 3 3
B. πa 3
C. 2 πa 3 3
D. 2 πa 3 2 3
Đáp án A
Từ giả thiết ta có: h = AA' = 2a;
Cho hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình vuông, chiều cao AA' = a và A ' C A ^ = 45 ° . Hãy tính:
a) Diện tích toàn phần hình hộp theo a;
b) Thể tích hình hộp theo a
Cho khối hộp chữ nhật A B C D . A ' B ' C ' D ' có A C = B ' D ' = a , A B ' = C D ' = b , A D ' = B ' C = c . Thể tích của khối hộp chữ nhật A B C D . A ' B ' C ' D ' là
A. 1 8 − a 2 + b 2 + c 2 a 2 − b 2 + c 2 a 2 + b 2 − c 2
B. 1 2 2 b 2 + c 2 a 2 + c 2 a 2 + b 2
C. 3 a b c
D. 1 2 2 − a 2 + b 2 + c 2 a 2 − b 2 + c 2 a 2 + b 2 − c 2
Đáp án D
Gọi độ dài các cạnh A A ' , A D , A B lần lượt là x , y , z . Ta có
y 2 + z 2 = a 2 1 z 2 + x 2 = b 2 2 x 2 + y 2 = c 2 3 ⇒ x 2 + y 2 + z 2 = 1 2 a 2 + b 2 + c 2 4
Trừ vế theo vế (4) cho (1), (2), (3) ta có
x 2 = 1 2 − a 2 + b 2 + c 2 ; y 2 = 1 2 a 2 − b 2 + c 2 ; z 2 = 1 2 a 2 + b 2 − c 2
Thể tích khối hộp chữ nhật là
1 2 2 − a 2 + b 2 + c 2 a 2 − b 2 + c 2 a 2 + b 2 − c 2