Cho phương trình m 2 + 5 m + 4 x 2 = m + 4 , trong đó m là một số. Chứng minh rằng: Khi m = - 2 hoặc m = -3, phương trình vô nghiệm.
Bài 2. (2,0 điểm)
Cho phương trình \(x^2+2\left(m+1\right)x+m-4\) (m là tham số).
a. Giải phương trình khi m = -5 .
b. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.
c. Tìm m sao cho phương trình đã cho có hai nghiêm \(x_1;x_2\) thỏa mãn hệ thức \(x_1^2+x_2^2+3x_1x_2=0\)
Bài 1: Cho phương ẩn x: (1-2m) x – m-4=0 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất.
b) Tìm giá trị của m để phương trình có nghiệm x=2
c) Giải phương trình khi m= 5
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
Cho phương trình: \(x^2\) - 2 ( m -1 ) x - m -3 = 0 (1)
a) Giải phương trình với m = -3
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn: \(\left(x_1-x_2\right)^2\) = 4\(m^2\) - 5 x1 + x2
a, Thay \(m=-3\) vào \(\left(1\right)\)
\(x^2-2.\left(m-1\right)x-m-3=0\\ \Leftrightarrow x^2-2.\left(-3-1\right)x+3-3=0\\ \Leftrightarrow x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy với \(m=-3\) thì \(x=0;x=-8\)
b,
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)\\ =m^2-2m+1+m+3\\ =m^2-m+4\)
phương trình có hai nghiệm phân biệt
\(\Delta'>0\\ m^2-m+4>0\\ \Rightarrow m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{7}{2}>0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0\left(lđ\right)\)
\(\Rightarrow\forall m\)
Áp dụng hệ thức Vi ét :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow x_1^2+2x_1.x_2+x^2_2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(2.\left(m-1\right)\right)^2-4.\left(-m-3\right)=4m^2-5.\left(-m-3\right)\\ \Leftrightarrow4m^2-8m+4+4m+12-4m^2-5m-15=0\\ \Leftrightarrow-9m+1=0\\ \Leftrightarrow m=\dfrac{1}{9}\)
Vậy \(m=\dfrac{1}{9}\)
a.
Thế m = -3 vào phương trình (1) ta được:
\(x^2-2\left(-3-1\right)x-\left(-3\right)-3=0\)
\(\Leftrightarrow\) \(x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\\ \Rightarrow x_1=0,x_2=-8\)
b.
Để phương trình (1) có hai nghiệm phân biệt thì:
\(\Delta>0\\ \Leftrightarrow\left[-2\left(m-1\right)\right]^2-4.1.\left(-m-3\right)>0\)
\(\Leftrightarrow4.\left(m^2-2m+1\right)+4m+12>0\)
\(\Leftrightarrow4m^2-8m+4+4m+12>0\)
\(\Leftrightarrow4m^2-4m+16>0\)
\(\Leftrightarrow\left(2m\right)^2-4m+1+15>0\)
\(\Leftrightarrow\left(2m-1\right)^2+15>0\)
Vì \(\left(2m-1\right)^2\) luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình (1) có nghiệm với mọi m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\) (I)
có:
\(\left(x_1-x_2\right)^2=4m^2-5x_1+x_2\)
<=> \(x_1^2-2x_1x_2+x_2^2-4m^2+5x_1-x_2=0\)
<=> \(x_1^2-2x_1x_2+x_2^2+2x_1x_2-2x_1x_2-4m^2+5x_1-x_2=0\)
<=> \(\left(x_1+x_2\right)^2-4x_1x_2-4m^2+5x_1-x_2=0\)
<=> \(\left(2m-2\right)^2-4.\left(-m-3\right)-4m^2+5x_1-x_2=0\)
<=> \(4m^2-8m+4+4m+12-4m^2+5x_1-x_2=0\)
<=> \(-4m+16+5x_1-x_2=0\)
<=> \(5x_1-x_2=4m-16\) (II)
Từ (I) và (II) ta có:
\(\left\{{}\begin{matrix}5x_1-x_2=4m-16\left(2\right)\\x_1+x_2=2m-2\left(3\right)\\x_1x_2=-m-3\left(4\right)\end{matrix}\right.\)
Từ (2) ta có:
\(x_1=\dfrac{4m-16+x_2}{5}=\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2\) (x)
Thế (x) vào (3) được:
\(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2=2m-2\)
<=> \(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2-2m+2=0\)
<=> \(-1,2m-1,2+1,2x_2=0\)
<=> \(x_2=1,2m+1,2\) (xx)
Thế (xx) vào (3) được:
\(x_1+1,2m+1,2=2m-2\)
<=> \(x_1+1,2m+1,2-2m+2=0\)
<=> \(x_1-0,8m+3,2=0\)
<=> \(x_1=-3,2+0,8m\) (xxx)
Thế (xx) và (xxx) vào (4) được:
\(\left(-3,2+0,8m\right)\left(1,2m+1,2\right)=-m-3\)
<=> \(-3,84m-3,84+0,96m^2+0,96m+m+3=0\)
<=> \(0,96m^2-1,88m-0,84=0\)
\(\Delta=\left(-1,88\right)^2-4.0,96.\left(-0,84\right)=6,76\)
\(m_1=\dfrac{1,88+\sqrt{6,76}}{2.0,96}=\dfrac{7}{3}\left(nhận\right)\)
\(m_2=\dfrac{1,88-\sqrt{6,76}}{2.0,96}=-\dfrac{3}{8}\left(nhận\right)\)
T.Lam
cho phương trình x^2-2(m-2)x-5=0 tìm m để phương trình có 2 nghiệm x1;x2 thoả mãn ||x1|-|x2||=4
\(\Delta'=\left(m-2\right)^2+5>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)
\(\left|\left|x_1\right|-\left|x_2\right|\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|-\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=16\)
\(\Leftrightarrow4\left(m-2\right)^2-2.\left(-5\right)-2.\left|-5\right|=16\)
\(\Leftrightarrow\left(m-2\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}m-2=2\\m-2=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)
Cho phương trình 2
x x m 5 4 0 , ẩn x, tham số m.
a) Giải phương trình với m = 0.
b) Tìm m để phương trình có 2 nghiệm phân biệt 1 2 x , x thỏa mãn: 2 2
1 2 x x 23
Cho phương trình \(x^2-mx+m+\dfrac{5}{4}=0\). Tìm giá trị của m để phương trình có nghiệp kép âm
\(\Delta=\left(-m\right)^2-4\cdot1\cdot\left(m+\dfrac{5}{4}\right)\)
\(=m^2-4m-5\)
Để phương trình có nghiệm kép âm thì \(\left\{{}\begin{matrix}m^2-4m-5=0\\\dfrac{m}{2}< 0\end{matrix}\right.\Leftrightarrow m=-1\)
Để pt có nghiệm kép:
\(\Leftrightarrow\Delta=0\\ \Leftrightarrow b^2-4ac=0\\ \Leftrightarrow\left(-m\right)^2-4.1.\left(m+\dfrac{5}{4}\right)=0\\ \Leftrightarrow m^2-4m-5=0\\ \Leftrightarrow m^2+m-5m-5=0\\ \Leftrightarrow m.\left(m+1\right)-5.\left(m+1\right)=0\\ \Leftrightarrow\left(m-5\right).\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=5\left(loại.vì.không.cho.nghiệm.kép.âm\right)\\m=-1\end{matrix}\right.\)
Vậy để pt trên có nghiệm kép thì m= -1
Có gì không hiểu hỏi lại nha, mai tui thi mà còn đang giúp mấy người đâyyy
cho 2 phương trình x^2-2(m+1)x-m^4+m^2-1=0
a) giải 2 phương trình với m=1
b) CMR phương trình có nghiệm với mọi m
c) gọi x1; x2 là 2 nghiệm của phương trình tìm min A=-x1x2+5
a) Với m = 1 thay vào phương trình ta có:
\(x^2-4x-1=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{cases}}\)
b) Phương trình có: \(\Delta'=\left(m+1\right)^2-\left(-m^4+m^2-1\right)\)
\(=m^4+2m+2\)
\(=m^4-2m^2+1+m^2+2m+1+m^2\)
\(=\left(m^2-1\right)^2+\left(m+1\right)^2+m^2\ge0\)
=> Phương trình có nghiệm với mọi m
c) Áp dụng định lí viet ta có: x1 . x2 = -m^4 + m^2 - 1
=> A = m^4 - m^2 + 6 = \(\left(m^2-\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
Dấu "=" xảy ra <=> \(m^2-\frac{1}{2}=0\Leftrightarrow m=\pm\frac{\sqrt{2}}{2}\)
Vậy min A = 23/4 tại \(m=\pm\frac{\sqrt{2}}{2}\)
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Cho phương trình: \(x^2\) - (2m+3)x - 2m - 4 = 0 (m là tham số).
a) Tìm m để phương trình có 2 nghiệm phân biệt.
b) Tìm m phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 5
a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`
cho phương trình: x^2 -2(m-1)x +m+2 =0 (1),(x là ẩn, m là tham số) a) Giải phương trình với m=5
b) tìm m dể phương trình 1 có 2 nghiệm x1, x2 thỏa mãn: x1/x2+x2/1=4a) Với m = 5 phương trình đã cho trở thành
x2 - 8x + 7 = 0
Dễ thấy phương trình trên có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 7
Vậy với m = 5 thì phương trình đã cho có tập nghiệm S = { 1 ; 7 }
b) Ta có : Δ = b2 - 4ac = [ -2( m - 1 ) ]2 - 4( m + 2 )
= 4( m2 - 2m + 1 ) - 4m + 8
= 4m2 - 12m + 12 = 4( m - 3/2 )2 + 3 ≥ 3 > 0 ∀ m
=> Phương trình đã cho luôn có hai nghiệm phân biệt với mọi số thực m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)
Ta có : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)
\(\Rightarrow x_1^2+x_2^2=4x_1x_2\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Rightarrow\left(2m-2\right)^2-6\left(m+2\right)=0\)
\(\Leftrightarrow4m^2-8m+4-6m-12=0\Leftrightarrow2m^2-7m-4=0\)
Đến đây dễ rồi bạn tự làm tiếp heng :)