Vẽ ΔABC có A = 900. Vẽ 3 tia phân giác của 3 góc.
Cho ΔABC vuông tại A, đường cao AH, đường phân giác AD của ΔAHC. Tia phân giác góc ABC cắt AD tại K
a) CM góc KBA = góc DAC, BK vuông góc AD
b) Vẽ phân giác AE của ΔHAB (E ϵ HB) . Gọi O là giao 3 đường phân giác của ΔABC. Tính góc DOE
a: góc KBA=1/2*góc ABC
góc DAC=1/2*góc HAC
mà góc ABC=góc HAC
nên góc KBA=góc DAC
góc BAD+góc CAD=90 độ
góc BDA+góc DAH=90 độ
mà góc CAD=góc DAH
nên góc BAD=góc BDA
=>ΔBAD cân tại B
=>BK vuông góc AD
b: BO là phân giác của góc BA
=>OA=OE
CO là trung trực của AD
=>OA=OD
=>OE=OD
=>OA=OE
=>góc OAE=góc OEA
Vẽ Ox là tia đối của tia OA
góc xOE=góc OAE+góc OEA=2*góc xAE
Chứng minh tương tự, ta được: góc xOD=2*góc xAD
=>góc DOE=2*góc DAE
=2*1/2(góc BAH+góc HAC)=90 độ
cho ΔABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a) ΔAMB=ΔAMC
b) AM là tia phân giác của góc BAC
c) AM vuông góc BC
d) Vẽ At là tia phân gác của góc ngoài ở đỉnh A của ΔABC. Chứng minh: At//BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Bài 2 : vẽ ΔABC có góc là góc B = góc C. vẽ tia Az song song BC ,tia ax là tia đối của tia AB. Chứng Tỏ tia Az là tia phân giác của góc xAB
cho ΔABC cân tại A, có góc BAC nhọn, qua A vẽ tia phân giác BAC cắt BC tại D a, chứng minh Δ ABD= ΔACD b, Vẽ đường trung tuyến CF cuả ΔABC cắt AD tại G chứng minh G là trọng tâm của ΔABC c, Gọi H là trung điểm của DC . Qua H vẽ đường thẳng vuông góc với cạnh DC cắt AC tại E. chưng minh ΔDEC câb d, chứng minh ba điểm BGE thẳng hàng và AD > BD.
Cho tam giác ABC vuông tại A có góc ABC=60°
a) Tính số đo góc ACB b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh:
ΔABD=ΔABC
c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thắng vuông góc với AC, cắt tia Bx tại E. Chứng minh: AC=BE
d) Qua D kẻ đường thẳng song song với AB, qua B kẻ đường thẳng song song với AD. Chúng cắt nhau tại H. CM: DH⊥BH.
a: \(\widehat{ACB}=30^0\)
b: Xét ΔABD vuông tại A và ΔABC vuông tại A có
AD=AC
AB chung
Do đó: ΔABD=ΔABC
Bài 2. ΔABC có 𝐴̂ = 900 . Lấy M trên BC vẽ MH ⊥ AB, MK ⊥ AC.
a) So sánh 𝐵𝑀𝐻 ̂ và 𝐵𝐶𝐴 ̂, 𝐻𝐵̂𝑀 và 𝐾𝑀𝐶 ̂
b) Tính 𝐻𝑀𝐾 ̂
Bài 3. ΔABC có 𝐴̂ = 60 0 , AD là phân giác của góc A (D ∈ BC). Từ D vẽ đường thẳng song song với AB cắt AC ở M. Từ M vẽ MK // AD và cắt BC tại K.
a) Tính 𝐵𝐴𝐷 ̂, 𝐷𝑀𝐾 ̂, 𝐴𝐷𝑀̂;
b) Chứng minh rằng MK là phân giác của góc 𝐷𝑀𝐶 ̂.
Bài 4. Cho ΔABC. Tia phân giác của góc B và C cắt nhau ở I. Từ I kẻ đường thẳng song song vớ BC cắt AB ở F và AC ở E.
a) Chứng minh 𝐷𝐼𝐵̂ = 𝐷𝐵𝐼 ̂
b) Chứng minh 𝐸𝐼𝐶̂ = 𝐸𝐶𝐼 ̂ . Bài 5. Cho ΔABC có 𝐴̂ = 120 0 . Từ C kẻ đường thẳng song song với phân giác AD của tam giác ABC và đường thẳng này cắt đường thẳng BA tại M. Tính 𝐴𝑀𝐶 ̂ và 𝐴𝐶𝑀̂.
Bài 5. Cho ΔABC có 𝐴̂ = 120 0 . Từ C kẻ đường thẳng song song với phân giác AD của tam giác ABC và đường thẳng này cắt đường thẳng BA tại M. Tính 𝐴𝑀𝐶 ̂ và 𝐴𝐶𝑀̂.
MÌNH BT LÀ DÀI NHƯNG MN AI ÓC THỜI GIAN THÌ GIÚP MÌNH Ạ
CHÂN THÀNH CẢM ƠN
Trên nữa mặt phẳng bờ chứa tia Ox vẽ x O t ^ = 45 0 , x O y ^ = 90 0
a) Tia Ot có là tia phân giác của góc xOy không ? vì sao ?
b) Gọi Oz là tia phân giác của y O t ^ . Tính x O z ^ .
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a) ∆AMB = ∆AMC.
b) AM là tia phân giác của góc BAC.
c) AM ⊥ BC.
d)* Vẽ At là tia phân giác của góc ngoài ở đỉnh A của ΔABC. Chứng minh: At//BC.
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a) ∆AMB = ∆AMC.
b) AM là tia phân giác của góc BAC.
c) AM ⊥ BC.
d)* Vẽ At là tia phân giác của góc ngoài ở đỉnh A của ΔABC. Chứng minh: At//BC.