a) Cho m > 2, chứng minh m 2 − 2 m > 0 .
Cho a < 0; b < 0 và a > b. Chứng minh 1 a < 1 b .
Suy ra kết quả tương tự a ≥ b > 0 .
1) Cho m>0 và m<1. Chứng minh m2<m
2) Cho a>b>0. Chứng minh a2-b2>0
a/ cho a+2>5 chứng minh a>3
b/ cho a>3 chứng minh a+2>5
c/ chứng tỏ m>n thì m-n>0
d/ chứng tỏ m-n>0 thì m>n
e/ cho m<n chứng minh m-5<n-4
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
1) Cho m>2, chứng minh m2-2m>0.
Cho a<0; b<0 và a>b. Chứng minh 1/a<1/b
Suy ra kết quả tương tự a≥b>0
1, Vì m > 2
\(\Rightarrow\) m - 2 > 2 - 2
\(\Rightarrow\) m(m - 2) > m(2 - 2)
\(\Rightarrow\) m2 - 2m > 0
a < 0; b < 0; a > b
\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))
Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn
Chúc bn học tốt!!
a,Cho M= 2020+20202+...+202010
Chứng minh M : 2021 dư 0
b, Cho A= 2021+20212+...+20212020
Chứng minh A:2022 dư 0
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
cho m>0 và a,b,c là 3 số thực thoả mãn a/m+2 +b/m+1 +c/m=0 Chứng minh rằng phương trình ax^2+bx+c =0 luôn có nghiệm
Cho M = \(\dfrac{a^2+b^2}{a+b}\) (a>0, b>0, a khác b). Giả sử a, b là các số dương phân biệt thỏa mãn a + b = 2. Chứng minh rằng M > 1.
Ta có \(M=\dfrac{a^2}{a+b}+\dfrac{b^2}{a+b}\ge\dfrac{\left(a+b\right)^2}{2\left(a+b\right)}\)(BĐT Schwarz)
\(=\dfrac{a+b}{2}=1\)
"=" <=> a = b = 1 (không thỏa mãn điều kiện)
=> "=" không xảy ra => M > 1(ĐPCM)
a) Cho m > 0 và m < 1. Chứng minh m 2 < m
b) Cho a > b > 0. Chứng minh a 2 − b 2 > 0 .
a) Ta có M < 1. Mà m > 0 nên m.m < m.1 hay m 2 < m.
b) Từ a > b > 0, ta suy ra được a 2 > ab > b 2 . Sử dụng tính chất bắc cầu và liên hệ giữa thứ tự với phép cộng ta có a 2 - b 2 > 0.
cho m>n>0 và gọi a=m^2+n^2; b=m^2-n^2; c=2*m-n. chứng minh a,b,c là độ dài 3 cạnh của tam giác vuông
a2 = (m2 + n2)2 = m4 + 2m2.n2 + n4
b2 = (m2 - n2)2 = m4 - 2m2.n2 + n4
c2 = (2mn)2 = 4m2.n2
Nhận xét: a2 - b2 = c2 => a2 = b2 + c2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
a.cho phương trình ẩn x: m^2x+m-6=0.Tìm giá trị của m để phương trình đã cho tương đương với phương trình: 3(x-1)-2(x+1)=-3.
b.Với a>0,b>0,c>0.Chứng minh bắt đẳng thức (ab/c) +(bc/a) +(ca/b) > hoặc = a+b+c.
c. Chứng minh 1+x+x^2 luôn luôn dương với mọi x.
d. Chứng minh rằng x^2 +y^2 +z^2 >hoặc = (x+y+z^2)/3
a: 3(x-1)-2(x+1)=-3
=>3x-3-2x-2=-3
=>x-5=-3
=>x=2
Thay x=2 vào pt(1), ta được:
\(2m^2+m-6=0\)
=>2m2+4m-3m-6=0
=>(m+2)(2m-3)=0
=>m=-2 hoặc m=3/2
c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)