Cho hình 88.
Hãy xác định vị trí tương đối của hai đường tròn (O) và (O’).
Cho hình 88.
a) Hãy xác định vị trí tương đối của hai đường tròn (O) và (O’).
b) Chứng minh rằng BC // OO’ và ba điểm C, B, D thẳng hàng.
a) Hai đường tròn (O) và (O’) cắt nhau
b) Xét tam giác ABC có:
OA = OB = OC = bán kính đường tròn (O)
Mà BO là trung tuyến của tam giác ABC
⇒ ∆ABC vuông tại B ⇒ AB ⊥ BC (1)
Lại có OO’ là đường trung trực của AB
⇒ AB ⊥ OO' (2)
Từ (1) và (2) ⇒ OO’ // BC
Chứng minh tương tự ta có ∆ABD vuông tại B ⇒ AB ⊥ BD (3)
Từ (1) và (3) ⇒ B, C, D thẳng hàng.
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA.
Hãy xác định vị trí tương đối của hai đường tròn.
Gọi O’ là tâm của đường tròn đường kính OA.
Gọi R và r lần lượt là bán kính đường tròn tâm O và tâm O’.
Suy ra, hai đường tròn đã cho tiếp xúc trong với nhau.
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA.
a) Hãy xác định vị trí tương đối của hai đường tròn.
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD.
a) Gọi O’ là tâm của đường tròn đường kính OA.
Gọi R và r lần lượt là bán kính đường tròn tâm O và tâm O’.
Suy ra, hai đường tròn đã cho tiếp xúc trong với nhau.
b) +) Xét đường tròn (O’) có A, O, C là ba điểm cùng thuộc đường tròn và OA là đường kính nên tam giác AOC vuông tại C.
⇒ OC ⊥ AD
+) Xét đường tròn tâm (O) có A, D là hai điểm thuộc đường tròn nên OA = OD
⇒ ΔAOD cân tại O mà OC ⊥ AD
⇒ OC là đường trung tuyến của ΔAOD
⇒ C là trung điểm của AD
⇒ AC = CD
cho đường tròn (O) có bán kính R=\(\sqrt{3}\)và đường tròn (O') có bán kính r=1. biết độ dài OO' =\(\sqrt{4-2\sqrt{3}}\).. Hãy xác định vị trí tương đối của hai đường tròn(O;R) và (O;r). giải thích
Hai đường tròn tiếp xúc trong nhau
Vì OO' =R-r
Cho đường tròn (O) có bán kính R=\(\sqrt{3}\)và đường tròn (O') có bán kính r=1. Biết độ dài OO'=\(\sqrt{4-2\sqrt{3}}\).Hãy xác định vị trí tương đối của hai đường tròn (O;R)và (O';r).Giải thích
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA
a) Hãy xác định vị trí tương đối của hai đường tròn
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD
Hướng dẫn giải:
a) Gọi O' là tâm của đường tròn đường kính OA thì O'A=O'O.
Ta có OO'=OA-O'A hay d=R-r nên đường tròn (O) và đường tròn (O') tiếp xúc trong.
b) Tam giác CAO có cạnh OA là đường kính của đường tròn ngoại tiếp nên ΔCAO vuông tại C
⇒OC⊥AD
⇒CA=CD (đường kính vuông góc với một dây).
Cho hai đg tròn (O;2 cm) và (O'2,5cm); OO'= 5cm cm. a, xác định vị trí tương đối của hai đg tròn (O) và (O')
Hai đường tròn này cắt nhau
Cho 2 đường tròn (O;R) và (O'R') với R>R'. Hai tiếp tuyến chung ngoài MN và PQ ( M, P ∈(O) ; N, Q ∈(O') )
a) CMR các đường thẳng MN, PQ, OO' đồng quy.
b) CM tứ giác MNQP là hình thanh cân.
c) Xác định vị trí tương đối của đường tròn (O) và (O') sao cho đường tròn đường kính OO' tiếp xú với đường thẳng MN.
Giúp mình với ạ, mình cảm ơn rất nhiều ạ! (Làm theo cách làm lớp 9 giúp mình ạ)
Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điểm A(1; -1), B(- 2 ; 2 ) và C(1; 2) đối với đường tròn (O; 2)
Gọi R là bán kính của đường tròn (O; 2). Ta có: R = 2
O A 2 = 1 2 + 1 2 = 2 ⇒ OA = 2 < 2
Vì OA < R nên điểm A nằm trong đường tròn (O; 2)
O B 2 = 2 2 + 2 2 = 2 + 2 = 4 ⇒ OB = 2
Vì OB = R nên điểm B thuộc đường tròn (O; 2)
O C 2 = 1 2 + 2 2 = 1 + 4 = 5 ⇒ OC = 5 > 2