Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Minh
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết
Akai Haruma
17 tháng 6 2019 lúc 17:38

Lời giải:

Gọi $R(x)$ là đa thức dư khi chia $P(x)$ cho $(x-1)(x-2)(x-3)(x-4)$. Bậc của $R(x)$ phải nhỏ hơn bậc đa thức chia. Do đó đặt:

\(R(x)=ax^3+bx^2+cx+d\)

\(P(x)=Q(x)(x-1)(x-2)(x-3)(x-4)+ax^3+bx^2+cx+d\)

Trong đó $Q(x)$ là đa thức thương.

Theo định lý Bê-du về phép chia đa thức:

\(\left\{\begin{matrix} P(1)=a+b+c+d=-2019\\ P(2)=8a+4b+2c+d=-2036\\ P(3)=27a+9b+3c+d=-2013\\ P(4)=64a+16b+4c+d=-1902\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a=8\\ b=-28\\ c=11\\ d=-2010\end{matrix}\right.\)

Vậy \(R(x)=8x^3-28x^2+11x-2010\)

b)

Từ phần a suy ra:

\(\left\{\begin{matrix} R(1)=P(1)=-2019\\ R(2)=P(2)=-2036\\ R(3)=P(3)=-2013\\ R(4)=P(4)=-1902\\ R(5)=8.5^3-28.5^2+11.5-2010=-1655\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 7 2018 lúc 5:06

Đáp án A

Thư Minh
Xem chi tiết
nguyễn bảo ngân
Xem chi tiết
trần thị minh hòa
30 tháng 12 2021 lúc 0:13

E x ∈ R=>x<2=>x2<4
 

cuong le
Xem chi tiết
Nguyễn Thế Vinh
Xem chi tiết
Linh Nguyen
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 20:59

\(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

\(\Rightarrow A=\left(-2;4\right)\)

\(\left|x+2\right|>5\Rightarrow\left[{}\begin{matrix}x+2>5\\x+2< -5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>3\\x< -7\end{matrix}\right.\)

\(\Rightarrow B=\left(-\infty;-7\right)\cup\left(3;+\infty\right)\)

\(A\cup B=\left(-\infty;-7\right)\cup\left(-2;+\infty\right)\)

\(A\cap B=\left(3;4\right)\)

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 9 2021 lúc 9:08

A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2018 lúc 8:52

Đáp án: A

Vì x2 + 4 > 0  ∀x ∈ R nên A = .

(x2 - 4)(x2 + 1) = 0   (x2 - 4) = 0  x =  ±2  nên B = {-2; 2}.

|x| < 2 ⇔ -2 < x < 2 nên D = (-2; 2).

 => A  B = C  D.