Tam giác ABC vuông tại A có A B = 12 c m , A C = 9 c m . Tính BC?
A. BC = 15cm
B. BC = 21cm
C. BC = 12cm
D. BC = 225cm
Cho tam giác ABC vuông tại A, tại C kẻ đường phân giác cắt BC tại D. Từ D kẻ DE vuông góc BC a)c/m tam giác ACD=tam giác ACE b)c/m tam giác ADE cân c)cho AB=12 cm, AC=13. Tính BC, tính chu vi tam giác ABC
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
cho tam giác ABC có góc A = 90 độ , AB = 9 cm , AC = 12 cm , đường cao AH
a ) tính BC , AH, BH
b) gọi M là trung điểm của BC , kẻ Mx vuông góc BC tại M ,Mx cắt BA tại D ,cắt AC tại E , c/m : tam giác BMD đồng dạng tam giác BAC
C) c/m : AH song song DM , tính HM , AD
d) c/m : BE vuông góc DC
Cho tam giác ABC vuông tại A có AB=12, AC=16. Kẻ đường thẳng vuông góc BC tại B và cắt AC kéo dài tại E.
A, Tính AE, ^C
B, AM vuông góc BC tại M. c/m tam giác MAB đồng dạng ABE
C, gọi CF là phân giác ^BCE. Kẻ BH vuông góc CF tại H, c/m ^CEF=^CHA
D, tính SEFMC
(góc làm tròn đến phút, cạnh làm tròn đến chữ số thập phân thứ nhất)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:
\(BA^2=AE\cdot AC\)
\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)
nên \(\widehat{C}\simeq36^052'\)
b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có
\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)
Do đó: ΔMAB\(\sim\)ΔABE(g-g)
Cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm a) tính độ dài cạnh ABC và chu vi tam giác ABC b) kẻ AK vuông góc BC biết AK = 4,8 . Tính BK và CK c) đường phân giác của góc B cắt AC tại D vẽ DH vuông góc vs BC (H thuộc BC). C/m m giác ABH = HBD D) c/m DA < DC
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
-Cho tam giác ABC vuông tại A , có BC=2AB . Gọi H là trung điểm của BC , đường thẳng vuông góc với BC tại H cắt AC tại M.
a) Biết ABC = 60 độ , tính góc C ?
b) Chứng minh tam giác MAB = tam giác MHB.
c) Chứng minh tam giác MBC cân
d) Chứng minh BM là đường trung trực của AH
giúp với ạ cần hình gấp😭
Cho tam giác ABC từ A Kẻ AH vuông góc với BC (H nằm giữa B và C) biết AC = 12 cm ah = 60/13 cm BH = 25/13 cm
a) tính AB;BC
b) tam giác ABC có phải là tam giác vuông không? Vì sao?
c)Kẻ HM vuông góc với AC tại M. Tính độ dài HM
Cho tam giác ABC vuông tại A,AB=5;AC=12 a)Tính Bc b)gọi m là trung điểm bc tính AM c)gọi g là trọng tâm của tam giác abc.tính AG d) kẻ đường cao AH.tính diện tích tam giác ABC,tính AH
Cho tam giác ABC vuông tại A có AB = 9 cm , AC = 12 cm
a. Tính góc B, C , đường BC và đường cao AH
b. Đường phân giác của góc A cắt BC tại D . Tính BD, CD
a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)
\(C=90^0-B\approx37^0\)
Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)
Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)
b) Vì AD là phân giác tại A của tam giác ABC nên:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà \(BD+CD=BC=15\)
\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)
Cho tam giác ABC vuông tại A có góc B=60 độ.Trên cạnh Bc lấy điểm D sao cho BA=BD.Tia phân giác góc B cắt BC tại I
a)C/m tam giác BAD đều
b)C/m tam giác IBC cân
c)C/m D là trung điểm của BC
d) Cho tam giác ABC vuông tại A có BC=26 cm.Tính độ dàu AB và AC biết rằng AB:AC=5:2
(Bạn tự vẽ hình giùm)
a/ Ta có BA = BD (gt)
nên \(\Delta BAD\)cân tại B
=> \(\widehat{BAD}=\frac{180^o-\widehat{B}}{2}\)
=> \(\widehat{BAD}=\frac{180^o-60^o}{2}\)
=> \(\widehat{BAD}=\widehat{BDA}=60^o=\widehat{B}\)
=> \(\Delta BAD\)đều (đpcm)
b/ \(\Delta ABI\)và \(\Delta DBI\)có: AB = DB (gt)
\(\widehat{ABI}=\widehat{IBD}\)(BI là tia phân giác \(\widehat{B}\))
Cạnh BI chung
=> \(\Delta ABI\)= \(\Delta DBI\)(c. g. c) => \(\widehat{A}=\widehat{BDI}=90^o\)(hai cạnh tương ứng)
và AI = DI (hai cạnh tương ứng)
=> BI = IC (quan hệ giữa đường xiên và hình chiếu)
nên \(\Delta BIC\)cân tại I (đpcm)
c/ Ta có \(\Delta BIC\)cân tại I (cmt)
=> Đường cao ID cũng là đường trung tuyến của \(\Delta BIC\)
=> D là trung điểm BC (đpcm)
d/ Ta có \(\Delta ABC\)vuông tại A
=> BC2 = AB2 + AC2 (định lý Pythagore)
=> AB2 + AC2 = 262 = 676
và \(\frac{AB}{AC}=\frac{5}{2}\)=> \(\frac{AB}{5}=\frac{AC}{2}\)=> \(\frac{AB^2}{25}=\frac{AC^2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{AB^2}{25}=\frac{AC^2}{4}=\frac{AB^2+AC^2}{25+4}=\frac{676}{29}\)
=> \(\hept{\begin{cases}\frac{AB}{5}=\frac{676}{29}\\\frac{AC}{2}=\frac{676}{29}\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{676}{29}.5\\AC=\frac{676}{29}.2\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{3380}{29}\left(cm\right)\\AC=\frac{1352}{29}\left(cm\right)\end{cases}}\)