Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Siêu Nhân Lê
Xem chi tiết
Trần Văn Thành
22 tháng 10 2016 lúc 14:10

dia chi ban vua truy cap khong tim thay

alibaba nguyễn
22 tháng 10 2016 lúc 17:00

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

Jenny123
22 tháng 10 2016 lúc 20:05

câu hỏi của bạn mình ko làm đc. với lại địa chỉ ko có

Tôi Là Ai
Xem chi tiết
NGUYEN NHAT MINH
2 tháng 1 2017 lúc 17:00

dvfvgf

zZz Cool Kid_new zZz
14 tháng 8 2019 lúc 8:42

Bạn tham khảo tại đây:

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

okazaki *  Nightcore -...
14 tháng 8 2019 lúc 9:06

link tham khảo 

link : https://olm.vn/hoi-dap/detail/61362911807.html

hok tốt

Tôi Là Ai
Xem chi tiết
Nguyễn Thiên Kim
21 tháng 10 2016 lúc 23:03

Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)

Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)

Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)

            \(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)

So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)

Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)

Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)

Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)

Jenny123
22 tháng 10 2016 lúc 20:31

bạn viết gì mà mik chẳng hiểu gì cả

KJ kun
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
Riio Riyuko
16 tháng 5 2018 lúc 22:18

\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)

\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)

Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\)         (*)

Đặt (x;y;z) ------->  \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Suy ra (*)  <=>  \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)

Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)

Đẳng thức xảy ra <=> x = y = z = 1 

Riio Riyuko
16 tháng 5 2018 lúc 22:19

Nguồn : Trần Thắng

Siêu Nhân Lê
Xem chi tiết
Lightning Farron
21 tháng 10 2016 lúc 23:19

olm có ng` lm r` đó bn qua xem lại

Duong Thi Nhuong
22 tháng 10 2016 lúc 9:18

http://olm.vn/hoi-dap/question/731102.html

Trịnh Quỳnh Nhi
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Kiệt Nguyễn
21 tháng 5 2020 lúc 14:32

Do x, y, z khác 1 và thỏa mãn xyz = 1 nên ta có thế đặt: \(x=\frac{a^2}{bc};y=\frac{b^2}{ca};z=\frac{c^2}{ab}\)

với \(\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\ne0\)

Khi đó BĐT cần chứng minh được viết lại như sau:

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ca\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Áp dụng BĐT Bunhiacopxki ta có: \(\left[\text{∑}_{cyc}\left(a^2-bc\right)^2\right]\left[\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\right]\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\)

Đến đây, ta cần chứng minh: \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\ge1\left(^∗\right)\)

Thật vậy. \(\left(^∗\right)\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge a^4+b^4+c^4\)\(+\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+2ab^2c+2abc^2\right)\ge0\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\)*đúng*

Vậy bất đẳng thức được chứng minh.

Khách vãng lai đã xóa
Tran Le Khanh Linh
21 tháng 5 2020 lúc 20:35

Vì xyz=1 nên x,y,z \(\ne\)0. Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) thì ta có: \(abc=1\) và \(a,b,c\ne0,1\)

Khi đó BĐT cần chứng minh trở thành

\(\frac{1}{\left(1-a\right)^2}+\frac{1}{\left(1-b\right)^2}+\frac{1}{\left(1-c\right)^2}\ge1\Leftrightarrow\left(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\right)^2\)

\(-2\left[\frac{1}{\left(1-a\right)\left(1-b\right)}+\frac{1}{\left(1-b\right)\left(1-c\right)}+\frac{1}{\left(1-c\right)\left(1-a\right)}\right]\ge1\)

\(\Leftrightarrow\left[\frac{32\left(a+b+c\right)+ab+bc+ca}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca+ca-\left(a+b+c\right)}\right]\ge1\)

\(\Leftrightarrow\left[1+\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)

\(\Leftrightarrow1+\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)

Khách vãng lai đã xóa
Minh Phương
Xem chi tiết