Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiểu an Phạm
Xem chi tiết
hoang bao nhi
Xem chi tiết
Đào An Nguyên
26 tháng 7 2015 lúc 8:45

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}

Nguyễn Thị Mai Anh
Xem chi tiết
Bảo Linh
Xem chi tiết
Mẫn Nhi
16 tháng 9 2018 lúc 23:42

Ta có :\(\left(2011+1\right)^2=2011^2+1+2.2011\)

\(\Rightarrow2011^2+1=2012-2.2011\)

\(\Rightarrow N=\sqrt{2012^2-2.2011+\left(\dfrac{2011}{2012}\right)^2}+\dfrac{2011}{2012}\)

\(=\sqrt{\left(2012-\dfrac{2011}{2012}\right)^2}+\dfrac{2011}{2012}\)

\(=2012-\dfrac{2011}{2012}+\dfrac{2011}{2012}\)

\(=2019\)

Vậy N có giá trị là một số tự nhiên.

Nhân cute
Xem chi tiết
Phùng Minh Quân
21 tháng 3 2018 lúc 20:44

Ta có : 

\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)

Lại có : 

\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)

Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)

Vậy \(M>N\)

Chúc bạn học tốt ~ 

Liêu Phong
Xem chi tiết
Lê Minh Anh
30 tháng 9 2016 lúc 9:30

N =\(\frac{2010+2011+2012}{2011+2012+2013}\)

\(\Rightarrow N=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Do: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013};\frac{2011}{2012}>\frac{2011}{2011+2012+2013};\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\Leftrightarrow N>M\)

Hồ Thị Thanh Ngọc
Xem chi tiết
Dương Thị Bảo Đoan
Xem chi tiết
Thiên An
27 tháng 7 2016 lúc 20:47

Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)

\(=\frac{\sqrt{n+1}}{\sqrt{n}.\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thay n = 1, 2, 3, ..., 2011 vào C ta có:

\(C=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}=1-\frac{1}{\sqrt{2012}}\)

Vậy \(C=1-\frac{1}{\sqrt{2012}}.\)

Dương Thị Bảo Đoan
28 tháng 7 2016 lúc 12:01

uk xie xie (cảm ơn ) bạn , nhưng mik giải ra lâu r

phong
Xem chi tiết