Trong hình vuông ABCD có điểm I sao cho góc ICB = góc IBC =15 độ.CM tam giác AID đều
Trong hình vuông ABCD có điểm I sao cho góc ICB = góc IBC =15 độ.CM tam giác AID đều
1.trên cạnh AB ở phía trong hình vuông ABCD dựng tam giác AFB cân, đỉnh F có góc đáy là 15 độ.Cm tam giác CFD là tam giác đều
2.Trong tam giác ABC lấy P sao cho góc PAC = góc PBC.Từ P dựng PM vuông góc vs BC,PK vuông góc vs CA.Gọi D là trung điểm của AB.CM DK=DM
Cho tam giác ABC cân tại A, góc A=80 độ. Ở miền trong tam giác ấy lấy điểm I sao cho góc IBC=10 độ, góc ICB=30 độ. Tính góc AIB
cho hình vuông ABCD. Điểm E nằm trong hình vuông sao cho tam giác ECD cân có góc đấy bằng 15 độ. Chứng minh rằng tam giác ABE là tam giác đều
Cho tam giác ABC cân tại A, góc A= 100 độ, có I là một điểm trên đường phân giác của góc C sao cho góc IBC= 10 độ và ICB= 20 độ. Tính góc AIB
cho hình vuông ABCD lấy điểm I sao cho góc IAB=góc IBA=15 độ . chứng ming tam giác ICD đều
cho tam giác ABC có góc BAC =50 độ, góc ACB =70 độ. lấy điểm I nằm trong tam giác ABC sao cho góc IBC =30 độ, góc ICB =35 độ.
a) tính số đo góc ABC; b) chứng minh rằng các tia BI, CI lần lượt là tia phân giác của góc ABC, ACB; c) gọi D, E, F lần lượt là hình chiếu vuông góc của điểm I trên các đường thẳng BC, CA, AB. Chứng minh rằng I là giao điểm của 3 đường trung trực của tam giác DEF
a: góc ABC=180-50-70=60 độ
b: Vì góc IBC=1/2*góc ABC
nên BI là phân giác của góc ABC
Vì góc ICB=1/2*góc ACB
nên CI là phân giác của góc ACB
c: Xét ΔBFI vuông tại F và ΔBDI vuông tại D có
BI chung
góc FBI=góc DBI
=>ΔBFI=ΔBDI
=>ID=IF
Xét ΔCDI vuông tại D và ΔCEI vuông tại E co
CI chung
góc DCI=góc ECI
=>ΔCDI=ΔCEI
=>ID=IE=IF
=>I là giao của 3 đường trung trực ΔDEF
Cho hình vuông ABCD . Lấy điểm M ở miền trong hình vuông sao cho góc MCD bằng góc MCDvà bằng 15 độ . Chứng minh rằng tam giác MAB là tam giác đều
Cho hình vuông ABCD.Lấy điểm E trong hình vuông sao cho góc EDC = góc ECD=15 độ,vẽ điểm F trong hình vuông sao cho góc FDA = góc FAD =15 độ
a) Tam giác DEF đều
b) Tam giác ABE đều