cmr m.n(m+n) chia hết cho 2 ( với m,n là các số tự nhiên)
Chứng minh rằng nếu m^2+m.n+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
xét m tận cùng bằng 0 hoặc 5=>mn chia hết cho 5
xét m lẻ=>m4 có tận cùng bằng 1
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
xét m chẵn=>m4 có tận cùng bằng 6
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
từ các dữ liệu trên=>mn chia hết cho 5
=>đpcm
bài tập :CMR
a, ab . (a+b) chia hết cho 2 (a,b là các số tự nhiên)
b, có hai số tự nhiên m , n thỏa mãn m.n. (m+n)= 2015 không
(n+7).(n+10) và m.n.(m-n) trong đó m,n là số tự nhiên
b) Tìm số tự nhiên n khi n2 chia hết cho 3
2. chung to rằng
109+2 chia hết cho 31010-1 chia hết cho 9
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
Tìm m , n là số tự nhiên , hãy chứng tỏ rằng :
m.n( m^2 - n^2 ) chia hết cho 3
Lời giải:
Nếu $m$ hoặc $n$ chia hết cho $3$ thì hiển nhiên $mn(m^2-n^2)\vdots 3$.
Nếu $m$ và $n$ đều không chia hết cho $3$
$\Rightarrow m^2, n^2$ chia 3 dư $1$ (tính chất số chính phương)
$\Rightarrow m^2-n^2\vdots 3$
$\Rightarrow mn(m^2-n^2)\vdots 3$
Vậy $mn(m^2-n^2)\vdots 3$ với mọi $m,n$ nguyên.
chứng minh rằng nếu m^2+mn+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
Câu 9: Cho hai số tự nhiên n và m. Biết rằng n chia 5 dư 1, m chia 5 dư 4. Hãy chọn câu đúng *
A: m.n chia 5 dư 1
B: m – n chia hết cho 5
C: m + n chia hết cho 5
D: m.n chia 5 dư 3
Với m , n là các số tự nhiên và \(n\ne0\) . CMR :
\(405^n+2^{405}+m^2\)ko chia hết cho 10
Bạn ơi thiếu đề kìa !
Đáng lẽ 405n + 2405 + m2 = ?
Chứ nha
Sửa lại đề đi
Nếu giúp đc mk sẽ giúp