a) a^2 - b^2 -2x+ 2b
b) x^2 - xy + 2y - 4
Rút gọn biểu thức :
a, A = ( x - y ) ( x^2 + xy + y^2 ) - ( x + y ) ( x^2 - xy + y^2 )
b, B = ( a^2b^2 - 5a ) ( a^4 + b^4 + 5a^3b^2 + 25d^2 )
c, C = ( 2x + 3y ) ( 4x^2 - 6xy + 9y^2 )
d, D = ( y + 2 ) ( y^2 - 2y + 4 )
thực hiện phép tính;
a,\(\dfrac{\left(3a^2b\right)^3\left(ab^3\right)^2}{\left(a^2b^2\right)^4}\)
b,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
c,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
d,\(\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
Phân tích đa thức sau thành nhân tử
a) \(x^2y^2+1-x^2-y^2\)
b) \(x^4-x^2+2x-1\)
c) \(4a^2b^2-\left(a^2+b^2-1\right)^2\)
d) \(\left(xy+4\right)^2-\left(2x+2y\right)^2\)
e) \(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
Phân tích:
a, \(x^4+2x^3-6x-9\)
b, \(4a^2b^2-\left(a^2+b^2-1\right)^2\)
c,\(\left(xy+4\right)^2-\left(2x+2y\right)^2\)
d, \(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
b: \(=\left(2ab-a^2-b^2+1\right)\left(2ab+a^2+b^2-1\right)\)
\(=\left[1-\left(a^2-2ab+b^2\right)\right]\left[\left(a^2+2ab+b^2\right)-1\right]\)
\(=\left[1-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-1\right]\)
\(=\left(1-a+b\right)\left(1+a-b\right)\left(a+b-1\right)\left(a+b+1\right)\)
c: \(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)
\(=\left(y-2\right)\left(x-2\right)\left(x+2\right)\left(y+2\right)\)
phân tích đa thức thành nhân tử:
a)4a^2b^2-(a^2+b^2-1)^2
b)(xy+4)^2-(2x+2y)^2
c)x^4-2x^3-6x-9
d)x^4-2x^3+x^2-1
e)(a+1)(a^2-1)-(a-1)(a^2+1)
f)(ab-1)^2-(a-2)^2
a) \(4a^2b^2-\left(a^2+b^2-1\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-1\right)^2\)
\(=\left(2ab-a^2-b^2+1\right)\left(2ab+a^2+b^2-1\right)\)
\(=\left(1-a^2+2ab-b^2\right)\left(a^2+2ab+b^2-1\right)\)
\(=\left[1-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-1\right]\)
\(=\left(1-a+b\right)\left(1+a-b\right)\left(a+b-1\right)\left(a+b+1\right)\)
b) \(\left(xy+4\right)^2-\left(2x+2y\right)^2\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
c)x4-2x3-6x-9
=(x4-9)-(2x3+6x)
=(x2+3)(x2-3)-2x(x2-3)
=(x2-3)(x2+3-2x)
(ab-1)2-(a-2)2
=(ab-1-a+2)(ab-1+a-2)
=(ab-a+1)(ab+a-3)
Thực hiện các tính, sau đó tính giá trị biểu thức.
A=(x^3-x^2y+xy^2-y^3)(x+y) với x = 2, y = -1/2
B = (a-b)(a^4+a^3b+a^2b^2+ab^3+b^4) với a = 3, b = -2
C=(x^2 -2xy +2y^2)(x^2+y^2)+2x^3-3x^2y^2+2xy^3 với x = -1/2, y = -1/2
Giúp mk vs ạ mk đang cần gấp
a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)
\(=x^4-y^4\)
Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:
\(A=2^4-\left(-\frac{1}{2}\right)^4\)
\(=16-\frac{1}{16}\)
\(=\frac{255}{16}\)
Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)
b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\)
Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:
\(B=3^5-\left(-2\right)^5\)
\(=243-\left(-32\right)\)
\(=243+32=275\)
Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2
c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)
\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)
\(=x^4-2x^3y+2y^4+2x^3\)
Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:
\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)
\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)
\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)
\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)
Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)
chứng minh các đẳng thức sau
a) (x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)= x^5-y^5
b) (x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)= x^5+y^5
c) (a+b)(a^3-a^2b+ab^2-b^3)=a^4-b^4
bài 9 : rút gọn các biểu thức
a. A = ( 2x + y )2 - ( 2x - y ) 2
b. B = ( x - 2y )2 - 4(x - 2y )y + 4y2
a) A = [(2x + y) - (2x - y)] . [(2x +y) + (2x - y)]
b) B = [(x - 2y) - 2y]2
\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\\ =\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\\ =2y\cdot4x\\ =8xy\\ b,B=\left(x-2y\right)^2-4y\left(x-2y\right)+4y^2\\ =x^2-4xy+4y^2-4xy+8y^2+4y^2\\ =x^2+16y^2-8xy\\ =\left(x-4y\right)^2\)
\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=2y.4x=8xy\)
Vậy \(A=8xy\)
\(----------\)
\(b,B=\left(x-2y\right)^2-4\left(x-2y\right)y+4y^2\)
\(=\left(x-2y\right)^2-2.\left(x-2y\right).2y+\left(2y\right)^2\)
\(=\left(x-2y-2y\right)^2\)
\(=\left(x-4y\right)^2\)
Vậy \(B=\left(x-4y\right)^2\)
cho các đa thức
a= 4x^2y-2xy^2-xy
b=xy-xy^2 =5x^2y
c= x^2y-2xy-xy^2
cm:a,a+b+c
b, a-b+c
c,a-b-c
d,a-2b-c
e, 2a-3b+2c