Cho a/b = c/d . Chứng minh
: a) a/a+c= b/b+d
b) a^2+c^2/b^2+d^2= ac/bd
cho tỉ lệ thức a/b=c/d chứng minh rằng a^2+ac/c^2-ac=b^2+bd/d^2-bd
Chứng minh a/a-b=c/c-d biết a/b=c/dCho ab=cd chứng minh rằng:a) aa−b =cc−db) ab=a+cb+dc)a3a+b=c3c+bd) a.cb.c=a2+c2b2+d2e) a.bc.d=a2−b2c2−d2f) a.bc.d=(a−b)2(c−d)2
cho a/b=c/d chứng minh rang a) a/b = a+c/b+d
b) a+b/c+d = a-b/c-d
c) a^2/b^2 = ac/bd
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy ta có đpcm
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
Vậy ta có đpcm
c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
=>\(\frac{a^2}{b^2}=\frac{\left(bk\right)^2}{b^2}=\frac{b^2k^2}{b^2}=k^2\) (1)
Mặt khác:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (2)
Từ (1) và (2) => \(\frac{a^2}{b^2}=\frac{ac}{bd}\left(đpcm\right)\)
giai ra gium luon di em moi hoc toi bai ti le thuc
cho a/b=c/d chứng minh rang a) a/b = a+c/b+d
b) a+b/c+d = a-b/c-d
c) a^2/b^2 = ac/bd
b) \(ad=bc\)
\(\Rightarrow ac-ad+bc-bd=ac-bc+ad-bd\)
\(\Rightarrow a.\left(c-d\right)+b.\left(c-d\right)=c.\left(a-b\right)+d.\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
ai giai gium minh ma cinh xac nhat minh cho
Cho tỉ lệ thức a/b=c/d chứng minh ac/bd=a^2+c^2/b^2+d^2
=(c-a)^2/(d-b)^2
cho tỉ lệ thức a/b=c/d (a,b,c,d khác 0) chứng minh a-b/a=c-d/c
cho TLT a/b=c/d (a,b,c,d khac 0) cm a/d-b=c/c-d
đề bài tương tự câu trên chứng minh ac/bd=a^2 +c^2/ b^2+d^2
mình đang cần gấp nhanh lên
Cho a/b=c/d, Chứng minh a2+ac/(c2-ac)=b2+bd/(d2-bd)
cho a/b=c/d chứng minh a^2+c^2/b^2+d^2=ac/bd
ta có\(\frac{a}{b}\)= \(\frac{c}{d}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)
\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)
\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a.c}{b.d}\)
\(\frac{a^2+c^2}{b^2+c^2}\)=\(\frac{a.c}{b.d}\)
Cho a/b=c/d chứng minh rằng: (a2+ac)/(c2-ac)=(b2+bd)/(d2-bd)