1+sin5x=2cos22×x/2
Sin5x=sin4x-cos4x
9. Rút gọn các biểu thức sau
A= cos7x - cos8x - cos9x + cos10x / sin7x - sin8x - sin9x + sin10x
B = sin2x + 2sin3x + sin4x / sin3x +2sin4x + sin5x
C= 1+cosx + cos2x + cos3x / cosx + 2cos^2 . x -1
D = sin4x + sin5x + sin6x / cos4x + cos5x + cos6x
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
CM các đẳng thức:
a) \(\frac{1+sin4x+cos4x}{1-sin4x+cos4x}=tan\left(2x+\frac{15}{4}\right)\)
b) \(\left(sin5x-cos5x\right)^2-\left(sin3x+cos3x\right)^2=-2sin8x.cos2x\)
\(\frac{1+sin4x+cos4x}{1-sin4x+cos4x}=\frac{1+2sin2x.cos2x+2cos^22x-1}{1-2sin2x.cos2x+2cos^22x-1}\)
\(=\frac{2cos2x\left(sin2x+cos2x\right)}{2cos2x\left(cos2x-sin2x\right)}=\frac{sin2x+cos2x}{cos2x-sin2x}\)
\(=\frac{\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)}{\sqrt{2}cos\left(2x+\frac{\pi}{4}\right)}=tan\left(2x+\frac{\pi}{4}\right)\)
\(\left(sin5x-cos5x\right)^2-\left(sin3x+cos3x\right)^2\)
\(=\left(\sqrt{2}sin\left(5x-\frac{\pi}{4}\right)\right)^2-\left(\sqrt{2}sin\left(3x+\frac{\pi}{4}\right)\right)^2\)
\(=2sin^2\left(5x-\frac{\pi}{4}\right)-2sin^2\left(3x+\frac{\pi}{4}\right)\)
\(=1-cos\left(10x-\frac{\pi}{2}\right)-1+cos\left(6x+\frac{\pi}{2}\right)\)
\(=-sin10x-sin6x=-2sin8x.cos2x\)
\(\sin4x\sin5x+\sin4x\sin3x-\sin2x\sin x=0\)
\(\Leftrightarrow sin4x\left(sin5x+sin3x\right)-sin2x.sinx=0\)
\(\Leftrightarrow2sin^24x.cosx-2sin^2x.cosx=0\)
\(\Leftrightarrow cosx\left(2sin^24x-2sin^2x\right)=0\)
\(\Leftrightarrow cosx\left(1-cos8x-1+cos2x\right)=0\)
\(\Leftrightarrow cosx\left(cos2x-cos8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=2x+k2\pi\\8x=-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{k\pi}{3}\\x=\frac{k\pi}{5}\end{matrix}\right.\)
sin5x+sin3x+2cos2=1+sin4x
\(\sin\left(5x\right)+\sin\left(3x\right)+2\cos\left(x\right)=1+\sin\left(4x\right)\)
\(\Leftrightarrow2\sin\left(4x\right)\cos\left(x\right)-\sin\left(4x\right)+2\cos\left(x\right)-1=0\)
\(\Leftrightarrow\sin\left(4x\right)(2\cos\left(x\right)-1)+(2\cos\left(x\right)-1)=0\)
\(\Leftrightarrow(2\cos\left(x\right)-1)(\sin\left(4x\right)+1)=0\)
\(\Rightarrow\left[{}\begin{matrix}\cos\left(x\right)=\dfrac{1}{2}\\\sin\left(4x\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{-\pi}{2}+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{-\pi}{8}+k\dfrac{\pi}{2}\end{matrix}\right.\)
Rút gọn:
A=(2sin2x-sin4x)/(2sin2x+sin4x) B=(sin5x-sin3x)/(2cos4x) C=tanx((1+cos²x)/(sinx)-sinx)\(A=\frac{2sin2x-2sin2x.cos2x}{2sin2x+2sin2x.cos2x}=\frac{1-cos2x}{1+cos2x}=\frac{2sin^2x}{2cos^2x}=tan^2x\)
\(B=\frac{2cos4x.sinx}{2cos4x}=sinx\)
Câu C ko dịch được đề
sin4x + sin2x - 2cos²x = 0
sinx + sin5x + 1 - cos²x = 0
a: \(\Leftrightarrow2\cdot\sin3x\cdot\cos x-2\cos^2x=0\)
\(\Leftrightarrow\cos x\left(\sin3x-\cos x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\\sin3x=\cos x=\sin\left(\dfrac{\Pi}{2}-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\3x=\dfrac{\Pi}{2}-x+k2\Pi\\3x=\dfrac{\Pi}{2}+x+k2\Pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{2}\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
b: \(\Leftrightarrow\sin x+\sin5x+\sin^2x=0\)
\(\Leftrightarrow\sin x=0\)
hay \(x=k\Pi\)
Giải các phương trình sau :
a) \(\sin x+2\sin3x=-\sin5x\)
b) \(\cos5x\cos x=\cos4x\)
c) \(\sin x\sin2x\sin3x=\dfrac{1}{4}\sin4x\)
d) \(\sin^4x+\cos^4x=-\dfrac{1}{2}\cos^22x\)
Chứng minh:
\(\sin5x-2\sin x\times\left(\cos4x+\cos2x\right)=\sin x\)
\(sin5x-2sinx\left(cos4x+cos2x\right)=sin5x-2.2sinx.cosx.cos3x\)
\(=sin5x-2sin2x.cos3x\)
\(=sin5x-\left(sin5x+sin\left(-x\right)\right)\)
\(=-sin\left(-x\right)=sinx\)
Số nghiệm nằm trong đoạn − π 2 ; π 2 của phương trình sin 5 x + sin 3 x = sin 4 x là
A. 5.
B. 7.
C. 9.
D. 3.
Đáp án B
PT: sin 5 x + sin 3 x = sin 4 x
⇔ 2 sin 4 x cos x − sin 4 x = 0 ⇔ sin 4 x 2 cos x − 1 = 0
⇔ sin 4 x = 0 cos x = 1 2 ⇔ x = k π 4 1 x = − π 3 + 2 k π 2 x = π 3 + 2 k π 3
Trong đoạn − π 2 ; π 2 thì số nghiệm của (1) là 5 ứng với k ∈ 0 ; ± 1 ; ± 2 , (2) là 1 ứng với k = 0 , (3) là 1 ứng với k=0.
Như vậy PT đã cho có 7 nghiệm trong đoạn − π 2 ; π 2 .
Chung minh. 1-cos2x/1+cos2x=tan^2x
Bien doi thanh tich
a, A= sina +sinb+sin(a+b)
b, B=cosa +cosb +cos(a+b)+1
c, C= 1 + sina + cosa
d. D = sinx + sin3x +sin5x+sin7x
Chứng minh
a, sinx*sin(pi/3-x)*sin(pi/3+x)=1/4sin3x
b, cosx*cos(pi/3-x)*cos(pi/3+x)=1/4cos3x
c, cos5x*cos3x+sin7x*sinx=cos2x *cos4x
d, sin5x -2sinx(cos2x+cos4x)=sinx