cho a,b,c >0 abc+a+c=b CM:
\(\frac{2}{1+a^2}-\frac{2}{1+b^2}+\frac{3}{1+c^2}\subseteq\frac{10}{3}\)
cho a,b,c>0
Cm: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)
\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
1
cho a,b,c>0: abc=1
cm:\(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{9}{2\left(ab+bc+ca\right)}\ge\frac{9}{2}\)
2)
cho a,b,c >0 thỏa a+b+c=3. cm:
\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
làm đc bài nào thì trình bàybài giải vào giùm mik lun nhé!
thanks
2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1)
Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
1/ Cho a. b. c>0 và a+b+c= 1
CM: \(P=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)< \frac{1}{64}\)
2/ Cho x, y, z> 0 thỏa \(x^3+y^3+z^3=1\)
CM: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
3/ Cho x,y >0 và\(x+y\le1\)
CM: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
4/ Cho a, b, c là 3 cạnh tam giác
a) CM: \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
b) CM: \(a^3+b^3+c^3\ge3abc\)
5/ Cho tam giác ABC có các cạnh \(a\ge b\ge c\)
CM: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
6/ Cho \(x,y\ge1\)
CM: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho (a+b+c)^2=a^2+b^2+c^2 va a,b,c khac 0. CM :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Có: (a+b+c)2=a2+b2+c2
=> a2 +b2 +c2 +2(a*b+b*c+c*a)=a2 +b2 +c2
=>2*(a*b+b*c+c*a) = 0
=>a*b+b*c+c*a = 0
=> (a*b+b*c+c*a)/a*b*c = 0 ( cùng chia 2 vế cho a*b*c)
=> (a*b/a*b*c)+(b*c/a*b*c)+(c*a/a*b*c) = 0
=>1/c+1/a+1/b = 0
=>1/a3 +1/b3 +1/c3 =3*1/a*1/b*1/c = 3/a*b*c
z hả? tại mình ko bik cách viết phân số nên bn thg cảm.
a) Cho (a + b + c + 1)(a - b - c + 1) = (a - b + c - 1)(a + b - c - 1)
Cm : a = bc
b) Cho a = b + c. Cm \(\frac{a^3+b^3}{a^3+b^3}=\frac{a+b}{a+c}\)
c) cho a + b + c = abc;\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=c\)
Cm \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
Cho (a+b+c)2=a2+b2+c2 và a,b,c khác 0
Cm \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{abc}\)
1. CHo \(\frac{1}{a}+\frac{1}{b}=\frac{2}{b}\)(a,b ,c >0 )
CMR: \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)
2. CHo a,b,c > 0 và a2 + b2 + c2 = 3. CMR: a2b + b2c + c2a < = 3
3. CHo a,b,c thõa mãn a + b + c = 3. CM: \(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\le1\)
4. CHo a,b,c > 0 thõa mãn a + b + c < = 3/2
CM: \(P=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\ge343\)
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c