Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yen Phuoq
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:16

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:28

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

Tú Trần
Xem chi tiết
rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
vuthingoc
Xem chi tiết
vuthingoc
25 tháng 4 2015 lúc 9:47

Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)

vi x la so nguyen Dưỡng nen x-2 la so nguyen  duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6 

Voi x=3 => y= 6

voi x=6=> y=3

vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)

vuthingoc
26 tháng 4 2015 lúc 22:39

.....

Sau khi chi ra x-2 la uoc nguyen duong cua 4

 Co 3  Truong hop

x-2 =1; x-2=2;x-2=4

Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y

co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)

Sakura
Xem chi tiết
Hoàng Quang Kỳ
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Trần Văn Thịnh
Xem chi tiết
Trần Thị Loan
7 tháng 3 2015 lúc 19:56

\(\frac{1}{x}+\frac{1}{y}=\frac{2}{3}\Rightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{2}{3}\Rightarrow\frac{x+y}{xy}=\frac{2}{3}\Rightarrow3\left(x+y\right)=2xy\)

=> 3x + 3y -2xy = 0

=> (3x - 2xy) + 3y = 0 => x(3-2y) - \(\frac{3}{2}\).(3- 2y ) + \(\frac{9}{2}\)= 0

=> \(\left(x-\frac{3}{2}\right)\left(3-2y\right)=-\frac{9}{2}\Rightarrow\left(2x-3\right)\left(3-2y\right)=-9\)

vì x, y nguyên nên 2x - 3; 3-2y thuộc Ư (-9) = {9; -9; 3;-3; 1;-1}

2x-3 = 9 => x = 6 => 3-2y = -1 => y = 2

2x-3 = -9 => x = -3 => 3-2y = 1 => y = 1

2x-3 = 3 => x = 3 => 3-2y = -3 => y = 3 

2x-3 = -3 => x = 0 loại vì x nguyên dương

2x-3 = 1 => x = 2 => 3-2y = -9 => 6

2x-3 =-1 => x = 1 => 3-2y = 9 => y=-3 

vậy có tất cả các cặp (x;y) là (6;2); (-3;1);(3;3); (2;6);(1; -3)

Hoàng Lan Hương
27 tháng 1 2016 lúc 10:15

Cô giải sai rồi! x, y là số nguyên dương mà cô lấy cả  -3 vào!

Jesseanna
31 tháng 12 2016 lúc 9:59

Cách giải của loan đúng nhưng cặp (x;y)=(6;2);(3;3);(2;6) thôi nha!!

Nguyễn Văn Hồng Phúc
Xem chi tiết
Đàm Thị Minh Hương
2 tháng 4 2016 lúc 19:42

nếu y>4 thì x^2 luôn luôn có tận cùng là 3

Mà x dương nên x^2 không thể có tận cùng là 3 (Do x^2 là bình phương 1 stn)

=> y<4

Mà x, y nguyên dương => y>0

=> y=1,2,3 => Thử ra là được