Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2022 lúc 21:01

1: \(\Leftrightarrow\sin^3x=-\cos^3x\)

\(\Leftrightarrow\sin^3x=-\sin^3\left(\dfrac{\Pi}{2}-x\right)\)

\(\Leftrightarrow\sin^3x=\sin^3\left(-\dfrac{\Pi}{2}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\Pi}{2}+x+k2\Pi\\x=\dfrac{\Pi}{2}-x+k2\Pi\end{matrix}\right.\Leftrightarrow x=\dfrac{\Pi}{4}+k\Pi\)

2: \(\Leftrightarrow-\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x=0\)

\(\Leftrightarrow\sin x\cdot\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\cdot\cos x=0\)

\(\Leftrightarrow\sin x\cdot\dfrac{\cos\Pi}{6}-\cos x\cdot\sin\left(\dfrac{\Pi}{6}\right)=0\)

\(\Leftrightarrow\sin\left(x-\dfrac{\Pi}{6}\right)=0\)

\(\Leftrightarrow x-\dfrac{\Pi}{6}=k\Pi\)

hay \(x=k\Pi+\dfrac{\Pi}{6}\)

Mai Trần Trọng Nhân
Xem chi tiết
Khánh Linh Nguyễn
Xem chi tiết
Rin Huỳnh
14 tháng 9 2021 lúc 22:17

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

Rin Huỳnh
14 tháng 9 2021 lúc 22:24

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

Rin Huỳnh
14 tháng 9 2021 lúc 22:28

c) ĐKXĐ: x # kpi

Pt <=> tanx + 1/tanx + 2 = 0

--> tanx = -1

--> x = -pi/4 + kpi (k nguyên)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2019 lúc 6:55

Đáp án D

Tìm điều kiện để phương trình có nghĩa. Sau đó sử dụng công thức 2 cos   2 x = 1 - 2 sin 2 x  để đưa phương trình đã cho về phương trình bậc 2 đối với sin x và giải phương trình này để tìm nghiệm. Bước cuối cùng là đối chiếu điều kiện để kết luận nghiệm.

Điều kiện

Với điều kiện trên phương trình đã cho trở thành

Nếu 

không thỏa mãn điều kiện (1)

Vậy 

Ngân Lại
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:13

1/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(6tan^2x+6tanx+2=\frac{1}{cos^2x}\)

\(\Leftrightarrow6tan^2x+6tanx+2=1+tan^2x\)

\(\Leftrightarrow5tan^2x+6tanx+1=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=-\frac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{1}{5}\right)+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:16

b/

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Leftrightarrow1-tanx-2tan^2x-\frac{1}{cos^2x}=0\)

\(\Leftrightarrow1-tanx-2tan^2x-1-tan^2x=0\)

\(\Leftrightarrow3tan^2x+tanx=0\)

\(\Leftrightarrow tanx\left(3tanx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=-\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=arctan\left(-\frac{1}{3}\right)+k\pi\end{matrix}\right.\)

//Hoặc có thể giải như sau:

\(\Leftrightarrow1-sin^2x-sinx.cosx-2sin^2x-1=0\)

\(\Leftrightarrow3sin^2x+sinx.cosx=0\)

\(\Leftrightarrow sinx\left(3sinx+cosx\right)=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:18

c/

\(\Leftrightarrow1-sin^2x+\sqrt{3}sinx.cosx-1=0\)

\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x=0\)

\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\sqrt{3}cosx=sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 15:15

\(sina+sinb+sinc+3=0\)

\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)

Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)

\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)

\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)

b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)

\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)

\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)

\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)

Khách vãng lai đã xóa
Nguyễn Thị Thúy Nữ
Xem chi tiết
Aurora
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 19:15

\(cosx=cos2.\left(\dfrac{x}{2}\right)=cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\)

\(sinx=sin2\left(\dfrac{x}{2}\right)=2sin\dfrac{x}{2}cos\dfrac{x}{2}\)

\(\Rightarrow\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 11 2017 lúc 11:47

Đáp án D
Dùng công thức cos a.cos b+ sin a. sin b= cos (a-b) để biến đổi phương trình không chứa α về dạng giống phương trình có chứa α
Ta có