\(\sqrt{21-6\sqrt{10}}+\sqrt{21+6\sqrt{10}}\)
Rút gọn:
a) \(\sqrt{5+2\sqrt{6}+\sqrt{14-4\sqrt{6}}}\)
b) \(\sqrt{5-2\sqrt{6}}+\sqrt{11-4\sqrt{6}}\)
c) \(\sqrt{23+6\sqrt{10}}+\sqrt{47+6\sqrt{10}}\)
d) \(\sqrt{21-6\sqrt{10}}+\sqrt{21+6\sqrt{10}}\)
câu a) \(\sqrt{5+2\sqrt{6}}+\sqrt{14-4\sqrt{6}}\)
Thực hiện phép tính:
\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Lời giải:
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(\sqrt{5}+1)^2}{2}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}=2.\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
\(B=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
\(=\sqrt{18+2\sqrt{18.3}+3}+\sqrt{18-2\sqrt{18.3}+3}\)
\(=\sqrt{(\sqrt{18}+\sqrt{3})^2}+\sqrt{(\sqrt{18}-\sqrt{3})^2}\)
\(=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)
--------------
\(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{(4+\sqrt{10+2\sqrt{5}})(4-\sqrt{10+2\sqrt{5}})}\)
\(8+2\sqrt{4^2-(10+2\sqrt{5})}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{(\sqrt{5}-1)^2}\)
\(=8+2(\sqrt{5}-1)=6+2\sqrt{5}=(\sqrt{5}+1)^2\)
\(\Rightarrow C=\sqrt{5}+1\)
Lời giải:
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}=\sqrt{\frac{(\sqrt{5}-1)^2}{2}}+\sqrt{\frac{(\sqrt{5}+1)^2}{2}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}=2.\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
\(B=\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
\(=\sqrt{18+2\sqrt{18.3}+3}+\sqrt{18-2\sqrt{18.3}+3}\)
\(=\sqrt{(\sqrt{18}+\sqrt{3})^2}+\sqrt{(\sqrt{18}-\sqrt{3})^2}\)
\(=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)
--------------
\(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{(4+\sqrt{10+2\sqrt{5}})(4-\sqrt{10+2\sqrt{5}})}\)
\(8+2\sqrt{4^2-(10+2\sqrt{5})}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{(\sqrt{5}-1)^2}\)
\(=8+2(\sqrt{5}-1)=6+2\sqrt{5}=(\sqrt{5}+1)^2\)
\(\Rightarrow C=\sqrt{5}+1\)
Tính giá trị các biểu thức sau:
a. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
b. \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
a, đặt \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{2-\sqrt{3}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(b,\)
\(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}=\left[\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\right].\sqrt{10-2\sqrt{21}}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}\right)^2-2\sqrt{7.3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
a) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=3-1=2
b) Ta có: \(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=4\sqrt{7}\)
Tính:
1) \(\sqrt{4-2\sqrt{3}}\)
2) \(\sqrt{5+2\sqrt{6}}\)
3) \(\sqrt{7-2\sqrt{10}}\)
4) \(\sqrt{14-6\sqrt{6}}\)
5) \(\sqrt{8+2\sqrt{15}}\)
6) \(\sqrt{10-2\sqrt{21}}\)
7) \(\sqrt{11+2\sqrt{18}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
Bài: Tính giá trị các biểu thức sau
a. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
b. \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
\(a,\sqrt{10+\sqrt{9}}\)
b,\(\sqrt{21+6\sqrt{6}}\)-\(\sqrt{21-6\sqrt{6}}\)
c\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
d,\(\sqrt{x+1+2\sqrt{x}}\)
e,\(\sqrt{2\text{x}+3+2\sqrt{x^2+3\text{x}+2}}\)
giúp mik với,cảm ơn trc ạ
\(a\text{) }\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)
\(b\text{) }\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\\ =\sqrt{18+3+2\sqrt{54}}-\sqrt{18+3-2\sqrt{54}}\\ =\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}\\ =\sqrt{18}+\sqrt{3}-\sqrt{18}+\sqrt{3}\\ =2\sqrt{3}\)
\(d\text{) }\sqrt{x+1+2\sqrt{x}}\left(x\ge0\right)\\ =\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)
\(e\text{) }\sqrt{2x+3+2\sqrt{x^2+3x+2}}\left(x\le-2;x\ge-1\right)\\ =\sqrt{\left(x+2\right)+\left(x+1\right)+2\sqrt{\left(x+1\right)\left(x+2\right)}}=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)
Xem lại đề câu c nha.
a)\(\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)
b)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
=\(\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\sqrt{3^2}}\)
=\(\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
=\(3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}\)
=\(2\sqrt{3}\)
c)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
ÁP dụng HĐT \(\sqrt{a+b}\pm\sqrt{a-b}=\sqrt{2\left(a.\sqrt{a^2\pm b}\right)}\)ta có:
=\(\sqrt{2\left(4+\sqrt{4^2-10-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{16-10-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{6-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.1+1^2}\right)}\)
=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}-1\right)^2}\right)}\)
=\(\sqrt{2\left(4+\sqrt{5}-1\right)}\)
=\(\sqrt{2\left(3+\sqrt{5}\right)}\)
=\(\sqrt{6+\sqrt{5}}=\sqrt{5}+1\)
d)\(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}\right)^2+2\sqrt{x}.1+1^2}=\sqrt{x}+1\)
Dạng 3.Chứng minh đẳng thức
Bài 1: CM
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
b)\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Bài 2 :CM
\(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{2}}=\sqrt{\sqrt{5}+1}\)
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
a,\(\sqrt{10+\sqrt{99}}\)
b,\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
c,\(\sqrt{4+10+2\sqrt{5}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
d,\(\sqrt{x+1+2\sqrt{x}}\)
e,\(\sqrt{2\text{x}+3+2\sqrt{x^2+3\text{x}+2}}\)
ai giúp tui vs cảm ơn trc ạ.
a) \(A=\sqrt{10+\sqrt{99}}=\sqrt{10+3\sqrt{11}}=\frac{1}{\sqrt{2}}.\sqrt{20+6\sqrt{11}}\)
\(=\frac{1}{\sqrt{2}}.\sqrt{\left(3+\sqrt{11}\right)^2}=\frac{3+\sqrt{11}}{2}\)
b) \(B=\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
c) bn ktra lại đề
d) ĐK: \(x\ge0\)
\(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)
e) đk: \(x\ge-1\)
\(\sqrt{2x+3+2\sqrt{x^2+3x+2}}=\sqrt{x+1+2\sqrt{\left(x+1\right)\left(x+2\right)}+x+2}\)
\(=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)
Tính :
1)\(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
2)\(\left(7+\sqrt{14}\right).\sqrt{9-2\sqrt{14}}\)
3)\(\left(\sqrt{6}+\sqrt{2}\right).\left(\sqrt{3}-2\right).\sqrt{\sqrt{3}+2}\)
4)\(\left(5+\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right).\sqrt{5-\sqrt{21}}\)
a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)