1. cho x-y=7 Tính:
b) B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100
1. cho x-y=7 Tính:
b) B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100
Lời giải:
$B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100$
$=x^4+x^3-y^3+y^2+xy-3xy(x-y)-3xy+100$
$=[x^3-y^3-3xy(x-y)]+x^4+y^2-2xy+100$
$=(x-y)^3+x^4-x^2+(x^2-2xy+y^2)+100$
$=(x-y)^3+x^4-x^2+(x-y)^2+100=7^3+x^4-x^2+7^2+100=492+x^4-x^2$
Như biểu thức trên thì không tính được giá trị cụ thể bạn nhé.
1. cho x-y=7 Tính:
a) A=x(x+2)+y(x-2)-2xy+37
b) B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100
a)
Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=x^2+y^2+1+2x-2y-2xy+36\)
\(=\left(x-y+1\right)^2+36\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=\left(7+1\right)^2+36=8^2+36=100\)
Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-7=7
Cho x-y=7
Tính B = x^3(x+1)-y^2(y-1)+xy-3xy (x-y-1) -95
Cho x-y=7
Tính:
a/ \(A=x^3-3xy\left(x-y\right)-y^3-x^2-2xy-y^2\)
b/ \(B=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
Bài1;
a, cho x-y=7 . Tính giá trị biểu thức
M= x^2.(x+1)-y^2.(y-1) + xy - 3xy .(x-y+1)-95
b, cho x+y =5. Tính gtri biểu thức
N= 3x^2-2x +3y^2-2y+6xy -100
a: \(M=x^3+x^2-y^3+y^2+xy-3xy-95\)
\(=\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(=7^3+7^2-95=297\)
b: \(N=3\left[\left(x+y\right)^2-2xy\right]-2\left(x+y\right)+6xy-100\)
\(=3\cdot\left(25-2xy\right)-10+6xy-100\)
=75-6xy-10+6xy-100
=-35
Cho x-y=7
Tính
a/ \(A=x^3-3xy\left(x-y\right)-y^3-x^2-2xy-y^2\)
b/ \(B=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
Cho x - y = 7, tính:
a, ( x3 - 3xy ).( x - y) - y3 - x2 + 2xy - y2
b, x2.( x + 1) - y2.( y - 1) + xy - 3xy.( x - y +1 ) - 95
cho x-y=7 tính giá trị của các bt sau
a) A= x2+y2+4x-2xy+4y+2019
b) B=x3-3xy(x-y)-y3-x2+2xy-y2
c) C=x2(x+1)-y2(y-1)+xy-3xy(x-y+1)
Ai muốn tích điểm thì làm giùm mk bài tập vs:
Bài 1: Cho x+y=5; xy=2. Tính (x-y)2
Bài 2: Cho x-y=6; xy=2. tính x+y
Bài 3: x-y=7. Tính A= x(x+2)+y(y-2)-2xy+37
Bài 4: x-y=5; x2+y2=15, Tính x3 - y3
Bài 5: x+y=3; x2 +y2 =5. Tính x3 +y3
Bài 6: Cho x-y=7. Tính M= x2(x+1)-y2(y-1)+xy-3xy(x-y+1)-95
Bài 7: Cho x-y=7. Tính M= x3-3xy(x-y)-y3-x2+2xy-y2
Bài 8: Tính M= a3 +b3 +3ab(a2+b2)+6a2b2(a+b)
Giúp mk vs. giúp đc bài nào thì giúp nha! Help!
Bài 8: Cho a+b= 1 nha ( mk thiếu đề)
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)