Chứng tỏ đa thức f(x) = x^4+2x^2+5>0
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
Bài 4 (0,5 điểm): Cho đa thức f(x) thỏa mãn : (x - 4).f(x + 1) = ( 5 + x).f(x). Chứng tỏ đa thức f(x) có ít nhất 2 nghiệm
Khi x=4 thì 0*f(5)=9*f(4)
=>f(4)=0
=>x=4 là nghiệm
Khi x=-5 thì f(-5)*0=(-9)*f(-4)
=>f(-4)=0
=>x=-4 là nghiệm
Bài 1: a)Chứng tỏ rằng x = 1, x = 7 là hai nghiệm của đa thức g(x) = x^2 - 8x + 7
b) Trong tập {1; 2; -1; 0} số nào là nghiệm của đa thức k(x) = x^4 + 2x^3 - x^2 + x - 3
c) Cho đa thức f(x) = ax^2 + bx + c (a, b, c là hằng số). Chứng minh rằng
Nếu a-b+c = 0 thì f(x) có một nghiệm x = -1
Bài 2: Tìm nghiệm của các đa thức sau:
a) f(x) = 5x + 7 b)h(x) = x^3 + 27
c) 3(x -2) - 5(x+1) d) (2x+5)(x-3)
Bài 1:Tìm nghiệm của đa thức sau:
a,C= 3x+5+(7-x)
b,D= 3(2x -8) -2(4-x)
Bài 2: Cho đa thức M(x)= 5x3 +2x4-x2 +3x2 -x3 -x4 +1 -4x3
Chứng tỏ đa thức M(x) không có nghiệm.
Bài 3: Cho đa thức f(x)= 2x4 + 3x +1
a, x=-1 có phải là nghiệm của f(x) không? Vì sao?
b, Chứng tỏ đa thức f(x) không có nghiệm dương.
CÁC BẠN GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!^^
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho 2 đa thức f(x)=ax^2+2x-3.g(x)=(2-b)x^2-2x+5 và a+b+2. chứng tỏ đa thuc h(x)=f(x)-g(x) vô nghiệm
có f(x)-g(x)=ax2 +2x - 3 - 2x2 +bx2 +2x - 5 ( đã phá ngoặc )
=> h(x)= ( a+b-2)x2 + 4x - 8 ( theo đề bài a+b=2)
=> h(x)=(2-2)x2 + 4x - 8x : x ( mình cho thêm x vào nhân với 8 và lại chia x để không có việc gì xảy ra )
=>h(x)= 0 + ( 4-8)x : x
=> h(x)= -4x:x = -4 . 1 = -4
vậy h(x) khác không hay h(x) không có nghiệm
cho đa thức f(x)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4
chứng tỏ đa thức trên không có nghiệm
Cho hai đa thức: f(x)= 5x^4+x^3-x+11+x^4-5x^3
g(x)2x^2+3x^4+9-4x^2-4x^3+2x^4-x
a) Thu gon và sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tính h(x)=f(x)-g(x)
c) Chứng tỏ rằng đa thức h(x) không có nghiêm
a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)
\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)
\(=6x^4-4x^3-x+11\)
Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)
\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)
\(=5x^4-4x^3-2x^2-x+9\)
b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)
\(=x^4+2x^2+2\)
c) Ta có: \(x^4\ge0\forall x\)
\(2x^2\ge0\forall x\)
Do đó: \(x^4+2x^2\ge0\forall x\)
\(\Leftrightarrow x^4+2x^2+2\ge2>0\forall x\)
Vậy: Đa thức h(x) không có nghiệm(Đpcm)
Cho 2 đa thức f(x) = 2x^7 + 3x^2 + 4x^3 - 4x^7 - 5x^2 + 3
g(x) = -3 - 5x + 2x^3 - 5x^7 - 4x^3 + 6x + 3
a,Thu gọn , Sắp xếp theo lũy thừa giảm giần
b, tính f + g , f-g
c, chứng tỏ rằng x=0 là nghiệm của đa thức g(x) nhưng không là nghiệm của đa thức f(x)
a: f(x)=-2x^7+4x^3-2x^2+3
g(x)=-5x^7-2x^3+x
b: f(x)+g(x)
=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x
=-7x^7+2x^3-2x^2+x+3
f(x)-g(x)
=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x
=3x^7+6x^3-2x^2-x+3
c: f(0)=0+0+0+3=3
=>x=0 ko là nghiệm của f(x)
g(0)=0+0+0=0
=>x=0 là nghiệm của g(x)