\(c\text{os}^2a+2sin^22a\)
Thu gọn các biểu thức sau:
a. \(sin^6a+c\text{os}^6a+3sin^2a.c\text{os}^2a\)
b.\(sin^4a-c\text{os}^4a-\left(sina+c\text{os}a\right)\left(sina-c\text{os}a\right)\)
c.\(c\text{os}^2a+tan^2a.c\text{os}^2a\)
d.\(c\text{os}^2a+tan^2a.c\text{os}^2a\)
a) \(sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cox^2x+cos^4x\right)+3sin^2x.cos^2x\)
\(=sin^4x-sin^2x.cox^2x+cos^4x+3sin^2x.cos^2x\)
\(=sin^4x+2sin^2x.cox^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\text{}\text{}\)
b) \(sin^4x-cos^4x-\left(sinx+cosx\right)\left(sinx-cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)\)
\(=1\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)=0\)
c) \(cos^2x+tan^2x.cos^2x\)
\(=cos^2x+\dfrac{sin^2x}{cos^2x}.cos^2x=sin^2x+cos^2x=1\)
\(\frac{sin2a-c\text{os}2a}{sin2a-c\text{os}2a}=tan4a-\frac{1}{c\text{os}4a}\)
\(\frac{sin2a-cos2a}{sin2a+cos2a}=\frac{\left(sin2a-cos2a\right)^2}{\left(sin2a+cos2a\right)\left(sin2a-cos2a\right)}\)
\(=\frac{sin^22a+cos^22a-2sin2a.cos2a}{sin^22a-cos^22a}=\frac{1-sin4a}{-cos4a}\)
\(=-\frac{1}{cos4a}+\frac{sin4a}{cos4a}=tan4a-\frac{1}{cos4a}\)
Đề ko đúng kìa bạn, vế trái tử mẫu giống nhau (bằng 1 luôn còn gì)
Tính :\(A=c\text{os}^2a-tan60+cot45-2sin30+c\text{os}^2a.tan^2a\)
\(sin^6a+c\text{os}^6a+3\text{s}in^2a.c\text{os}^2a=\)
CMR: \(1-2sin^2x.c\text{os}^2x=1-2cos^2x\)
CẦN GẤP!
Cho a là góc nhọn Rút gọn bt
\(A=sin^6a+c\text{os}^6s+3sin^2s+c\text{os}^2a\)
\(A=sin^6a+cos^6a+3\cdot sin^2a\cdot cos^2a\)
\(=\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a\cdot\left(sin^2a+cos^2a\right)+3\cdot sin^2a\cdot cos^2a\)
=1
A =
2 2 5 os 2sin 3cot c − +
với sin
=
2
5
.
b) B =
sin . os 4tan c +
với cot
5
12
=
Cho Tam giác ABC (C<45 độ) AB=c ; BC=a ; AC=b đường cao AH=h trung tuyến AM=m
CMR \(1-c\text{os}2\alpha=2sin^2\alpha\)
Rút gọn biểu thức
\(A=\frac{sin2a+sin5a-sin3a}{1+cosa-2sin^22a}\)
\(A=\frac{2sina.cosa+2cos4a.sina}{cos4a+cosa}=\frac{2sina\left(cos4a+cosa\right)}{cos4a+cosa}=2sina\)