Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thuy Tram
Xem chi tiết
Trần Minh Hoàng
30 tháng 1 2021 lúc 15:40

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).

Nguyễn Bích Hà
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 5 2020 lúc 13:26

Ko dịch được đề, đoán đại là \(\lim\limits\left(\sqrt[3]{n+1}-\sqrt[3]{n}\right)\) (hay là \(3\sqrt{n+1}-3\sqrt{n}\) ?)

\(\lim\limits\left(\sqrt[3]{n+1}-\sqrt[3]{n}\right)=lim\frac{\left(\sqrt[3]{n+1}-\sqrt[3]{n}\right)\left(\sqrt[3]{\left(n+1\right)^2}+\sqrt[3]{n\left(n+1\right)}+\sqrt[3]{n^2}\right)}{\sqrt[3]{\left(n+1\right)^2}+\sqrt[3]{n\left(n+1\right)}+\sqrt[3]{n^2}}\)

\(=lim\frac{1}{\sqrt[3]{\left(n+1\right)^2}+\sqrt[3]{n\left(n+1\right)}+\sqrt[3]{n^2}}=0\)

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2022 lúc 22:05

Với FX580 hình như tính được luôn

Còn với mọi dòng máy thì: 

a. Nhập \(\dfrac{X^2+2X-3}{2X^2-X-1}\) và CALC với \(x=1,000000001\), máy cho kết quả \(\dfrac{4}{3}\)

b. Nhập \(\dfrac{\left|1-3X\right|}{3-X}\) và CALC với \(2,99999999\) (\(x\rightarrow3^-\) nên CALC với giá trị nhỏ hơn 3 1 chút xíu, nếu \(3^+\) thì sẽ CALC với giá trị lớn hơn 3 chút xíu)

Máy cho kết quả rất lớn, dấu dương, hiểu là \(+\infty\)

dang thi khanh ly
Xem chi tiết
Nguyễn Bích Hà
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 5 2020 lúc 19:10

Đoán là \(lim\frac{\sqrt{n^2+2n}-n}{\sqrt{4n^2+n}-2n}=lim\frac{\left(\sqrt{n^2+2n}-n\right)\left(\sqrt{n^2+2n}+n\right)\left(\sqrt{4n^2+n}+2n\right)}{\left(\sqrt{4n^2+n}-2n\right)\left(\sqrt{4n^2+n}+2n\right)\left(\sqrt{n^2+2n}+n\right)}\)

\(=lim\frac{2n\left(\sqrt{4n^2+n}+2n\right)}{n\left(\sqrt{n^2+2n}+n\right)}=\lim\limits\frac{2\left(\sqrt{4+\frac{1}{n}}+2\right)}{\sqrt{1+\frac{2}{n}}+1}=\frac{2\left(2+2\right)}{1+1}=4\)

dang thi khanh ly
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:09

\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)

\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)

\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)

\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)

\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)

P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm

Khách vãng lai đã xóa
Minh Huỳnh
Xem chi tiết
Nguyễn Thu Thảo
19 tháng 10 2016 lúc 20:09

x=5/3

Duyy Kh
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2022 lúc 20:02

Đề là \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}\) hay \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) em?

\(\dfrac{f\left(x\right)-5}{x-3}\) thì giới hạn bên dưới ko phải dạng vô định, kết quả là vô cực

Nguyễn Việt Lâm
24 tháng 3 2022 lúc 21:49

Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-15=0\) có nghiệm \(x=3\)

\(\Rightarrow f\left(3\right)=15\)

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{5f\left(x\right)-11}-4}{x^2-x-6}=\lim\limits_{x\rightarrow3}\dfrac{5f\left(x\right)-75}{\left(x-3\right)\left(x+2\right)\left(\sqrt[3]{\left(5f\left(x\right)-11\right)^2}+4\sqrt[3]{5f\left(x\right)-11}+16\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}.\dfrac{5}{\left(x+2\right)\left(\sqrt[3]{\left(f\left(x\right)-11\right)^2}+4\sqrt[3]{f\left(x\right)-11}+16\right)}\)

\(=7.\dfrac{5}{5.\left(\sqrt[3]{\left(5.15-11\right)^2}+4\sqrt[3]{5.15-11}+16\right)}=\dfrac{7}{48}\)

Nguyễn Trung Kiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 14:27

\(=\dfrac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}=x^2+5\)