Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 14:58

a: 7x+35=0

=>7x=-35

=>x=-5

b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

=>8-x-8(x-7)=1

=>8-x-8x+56=1

=>-9x+64=1

=>-9x=-63

hay x=7(loại)

Nguyễn Huy Tú
4 tháng 3 2022 lúc 14:59

a, \(7x=-35\Leftrightarrow x=-5\)

b, đk : x khác 7 

\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)

vậy pt vô nghiệm 

2, thiếu đề 

ILoveMath
4 tháng 3 2022 lúc 14:59

1.

\(a,7x+35=0\\ \Rightarrow7x=-35\\ \Rightarrow x=-5\\ b,ĐKXĐ:x\ne7\\ \dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\\ \Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{8\left(x-7\right)}{x-7}-\dfrac{1}{x-7}=0\\ \Leftrightarrow\dfrac{8-x-8x+56-1}{x-7}=0\\ \Rightarrow-9x+63=0\\ \Leftrightarrow-9x=-63\\ \Leftrightarrow x=7\left(ktm\right)\)

2.đề thiếu

 

Lê Quỳng Mai
Xem chi tiết
Lê Quỳng Mai
Xem chi tiết
Kelly Trần
2 tháng 12 2015 lúc 23:37

câu 2 có lẽ dễ nhất luôn :

tách x^2+(1+y)^2=1 thành x^2+1+2y+y^2=1   (1)

tách y^2+(1+x)^2=1 thành y^2+1+2x+x^2=1    (2)

lấy(1) trừ( 2)

==>>>> x=y 

tự làm tiếp nhé 

 

Đoàn Thanh Vân
Xem chi tiết
Tran Thao Anh
3 tháng 2 2016 lúc 12:26

<=> xy+5x+3y+15=xy+8x+y+8                 <=> 3x-2y=7           <=>  9x-6y=21 <=> x=3            <=> x=3

      10xy+14x-15y-21=10xy+10x-12y-12            4x-3y=9                  8x-6y=18       8.3-6y=18           y=1

HOANGTRUNGKIEN
3 tháng 2 2016 lúc 11:54

moi hok lop 6 thoi

ichigo và naoto
3 tháng 2 2016 lúc 11:54

mới hok 5 thôi

Đoàn Thanh Vân
Xem chi tiết
HOANGTRUNGKIEN
2 tháng 2 2016 lúc 13:54

em moi hoc lop 6 thoi sao lam duoc toan lop 9

Jurgen Klopp
2 tháng 2 2016 lúc 14:08

Grade 5 students only know how to do

tran thu ha
Xem chi tiết
alibaba nguyễn
5 tháng 5 2017 lúc 19:20

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

Cô Hoàng Huyền
6 tháng 5 2017 lúc 11:00

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

Vũ Tường Minh
5 tháng 5 2017 lúc 18:00

BALABOLO

TK NHA

Phạm Đức Nghĩa( E)
Xem chi tiết
Kim Khánh Linh
Xem chi tiết
Nguyễn Công Dương
18 tháng 5 2021 lúc 18:05

1.      \(2x^2-3x-5=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)

Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)

Khách vãng lai đã xóa
Hoàng Như Quỳnh
18 tháng 5 2021 lúc 18:08

2x2-3x-5=0

2x2+2x-5x-5=0

2x(x+1)+5(x+1)=0

(x+1)(2x+5)=0

TH1 x+1=0 <=>x=-1

TH2 2x+5=0<=>2x=-5<=>x=-5/2

2. ta có:

2(x-2y)-(2x+y)=-1.2-8

2x-4y-2x-y=-2-8

-5y=-10

y=2

thay vào 

x-2y=-1 ( với y=2)

<=> x-2.2=-1

x-4=-1

x=3

Khách vãng lai đã xóa
Nguyễn Công Dương
18 tháng 5 2021 lúc 18:11

2. Có : x - 2y = -1 <=> 2x - 4y = -2 (1)

            2x + y = 8 (2)

    Trừ (2) cho (1) theo vế ta được : 

        ( 2x + y ) - ( 2x - 4y ) = 8 - (-2 )

 <=> 5y = 10

<=> y = 2 (3)

    Thay (3) vào (2) ta được : 

       2x + 2 = 8

<=> 2x = 6

<=> x = 3

Vậy ( x ; y ) = ( 3 ; 2 )

Khách vãng lai đã xóa
Usagi Tsukino
Xem chi tiết

ĐKXĐ: x<>2 và y>=-1

\(\left\{{}\begin{matrix}\dfrac{1}{x-2}-2\sqrt{y+1}=-4\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{x-2}-4\sqrt{y+1}=-8\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-5\sqrt{y+1}=-15\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=3\\\dfrac{2}{x-2}=7-3=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+1=9\\x-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=\dfrac{5}{2}\end{matrix}\right.\left(nhận\right)\)

Usagi Tsukino
22 tháng 1 lúc 22:20

ai giải giúp mik ko, tự giải đi nè

Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:21

3.

ĐKXĐ: ...

Từ pt dưới:

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)

\(\Leftrightarrow y=x-2\)

Thế vào pt trên:

\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)

\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)

\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)

\(\Leftrightarrow x^2-5x+2=0\)