Rút gọn biểu thức sau.
-10 + (x - 16) + 9=−10+(x−16)+9
Rút gọn biểu thức sau: B=8^5×(-5)^8+(-2)^5×10^9/2^16×5^7+20^8
\(B=\dfrac{2^{15}\cdot5^8-2^5\cdot2^9\cdot5^9}{2^{16}\cdot5^7+2^{16}\cdot5^8}=\dfrac{2^{14}\cdot5^8\cdot\left(2-5\right)}{2^{16}\cdot5^7\left(1+5\right)}=\dfrac{1}{4}\cdot5\cdot\dfrac{-1}{2}=\dfrac{-5}{8}\)
Rút gọn biểu thức sau: A=8^5×(-5)^8+(-2)^5×10^9/2^16×5^7+20^8
Cho biểu thức B = 16 x + 16 - 9 x + 9 + 4 x + 4 + x + 1
với x ≥ -1.
Rút gọn biểu thức B;
Bài 60 (trang 33 SGK Toán 9 Tập 1)
Cho biểu thức $B=\sqrt{16 x+16}-\sqrt{9 x+9}+\sqrt{4 x+4}+\sqrt{x+1}$ với $x \geq-1$.
a) Rút gọn biểu thức $B$;
b) Tìm $x$ sao cho $B$ có giá trị là $16$.
\(a,B=4\sqrt{x=1}-3\sqrt{x+1}+2\)\(\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
\(b,\)đưa về \(\sqrt{x+1}=4\Rightarrow x=15\)
a, Với \(x\ge-1\)
\(\Rightarrow B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b, Ta có B = 16 hay
\(4\sqrt{x+1}=16\Leftrightarrow\sqrt{x+1}=4\)bình phương 2 vế ta được
\(\Leftrightarrow x+1=16\Leftrightarrow x=15\)
a) B = 4√x+1 b) x = 15
Cho biểu thức
B = 16 x + 16 − 9 x + 9 + 4 x + 4 + x + 1
với x ≥ -1.
a) Rút gọn biểu thức B;
b) Tìm x sao cho B có giá trị là 16.
a) Rút gọn:
b) Để B = 16 thì:
⇔ x + 1 = 16 ⇔ x = 15 (thỏa mãn x ≥ -1)
RÚT GỌN BIỂU THỨC:
16) \(A = \dfrac{\sqrt{x}}{\sqrt{x} + 3} + \dfrac{2\sqrt{x}}{\sqrt{x} - 3} - \dfrac{3x + 9}{x - 9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) (ĐK: \(x\ge0;x\ne9\))
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{\left(\sqrt{x}\right)^2-3^2}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\dfrac{3}{\sqrt{x}+3}\)
Cho biểu thức B= \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\) với \(x\ge-1\).
a) Rút gọn biểu thức B.
b) tìm x sao cho B có giá trị là 16.
a.
\(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\left(x\ge-1\right)\)
\(B=\sqrt{16}.\sqrt{x+1}-\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}+\sqrt{x+1}\)
\(B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(B=\left(4-3+2+1\right).\sqrt{x+1}\)
\(B=4.\sqrt{x+1}\)
b.
\(B=16\\\)
\(\Rightarrow4\sqrt{x+1}=16\)
\(\Rightarrow\sqrt{x+1}=\dfrac{16}{4}=4\)
\(\Rightarrow x+1=4^2\)
\(\Rightarrow x+1=16\rightarrow x=16-1=15\) (thỏa mãn)
vậy x=15
Cho 2 biểu thức
A=2√x/x+3
B=√x+1/√x-3 +7√x+3/9+x
(đk x>= 0,x khác 9)
a)Tính giá trị tại của biểu thức A khi x=16
b) Rút gọn P=A+B
a: Thay x=16 vào A, ta được:
\(A=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)
Rút gọn các biểu thức :
1 . \(\frac{8\left(x+2y\right)^5}{2x+4y}\)
2. \(\left(\frac{3}{4}\right)^{45}:\left(\frac{9}{16}\right)^{10}\)
a, \(=\frac{8\left(x+2y\right)^5}{2\left(x+2y\right)}=8\left(x+2y\right)^4\)
b,\(=\left(\frac{3}{4}\right)^{45}:\left(\left(\frac{3}{4}\right)^2\right)^{10}\)
\(=\left(\frac{3}{4}\right)^{45}:\left(\frac{3}{4}\right)^{2.10}=\left(\frac{3}{4}\right)^{25}\)