Tính tổng : \(1-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{3}-\dfrac{1}{28}-\dfrac{1}{6}-\dfrac{1}{21}\)
D = 1 - \(\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{3}-\dfrac{1}{28}-\dfrac{1}{6}-\dfrac{1}{21}\)
\(\Leftrightarrow D=1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-\dfrac{1}{28}\)
\(\Rightarrow\dfrac{1}{2}D=\dfrac{1}{2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}-\dfrac{1}{5.6}-\dfrac{1}{6.7}-\dfrac{1}{7.8}\)
\(\Rightarrow D\dfrac{1}{2}=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow D=\dfrac{1}{8}.2=\dfrac{1}{4}\)
Vậy D=1/4
A=\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}\)
Ta có:
\(\dfrac{1}{3}\times\dfrac{12}{12}=\dfrac{12}{36};\)
\(\dfrac{1}{6}\times\dfrac{6}{6}=\dfrac{6}{36};\)
\(\dfrac{1}{10}\times\dfrac{3}{3}=\dfrac{3}{30};\)
\(\dfrac{1}{15}\times\dfrac{2}{2}=\dfrac{2}{30};\)
\(\dfrac{1}{21}\times\dfrac{4}{4}=\dfrac{4}{84};\)
\(\dfrac{1}{28}\times\dfrac{3}{3}=\dfrac{3}{84};\)
\(A=\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{3}{30}+\dfrac{2}{30}+\dfrac{4}{84}+\dfrac{3}{84}+\dfrac{1}{36}\)
\(=\left(\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{1}{36}\right)+\left(\dfrac{3}{30}+\dfrac{2}{30}\right)+\left(\dfrac{4}{84}+\dfrac{3}{84}\right)\)
\(=\dfrac{19}{36}+\dfrac{5}{30}+\dfrac{7}{84}\)
\(=\dfrac{19}{36}+\dfrac{1}{6}+\dfrac{1}{12}\)
\(=\dfrac{19}{36}+\dfrac{6}{36}+\dfrac{3}{36}\)
\(=\dfrac{28}{36}=\dfrac{7}{9}\)
Vậy: \(A=\dfrac{7}{9}\)
Câu 1: Tính giá trị biểu thức:
a.A=\(\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right)\).\(\dfrac{21}{24}\)
b.B=\(\dfrac{5}{6}\)+6\(\dfrac{5}{6}\)\(\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right)\):8\(\dfrac{1}{3}\)
c.C=1+3+6+10+15+...+1225.
tính
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
b)\(\dfrac{3}{14}:\dfrac{1}{28}-\dfrac{13}{21}:\dfrac{1}{28}+\dfrac{29}{42}:\dfrac{1}{28}-8\)
c)\(-1\dfrac{5}{7}.15+\dfrac{2}{7}\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
c; C = -1\(\dfrac{5}{7}\).15 + \(\dfrac{2}{7}\)(-15) + (-105).(\(\dfrac{2}{3}\) - \(\dfrac{4}{5}\) + \(\dfrac{1}{7}\))
C = - 15.(- 1 - \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\) + \(1\))
C = -15.[(1 - 1) - (\(\dfrac{5}{7}\) - \(\dfrac{2}{7}\)) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15.[0 - \(\dfrac{3}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15 . [- \(\dfrac{45}{105}\) + \(\dfrac{490}{105}\) - \(\dfrac{588}{105}\)]
C = -15. [ \(\dfrac{445}{105}\) - \(\dfrac{588}{105}\)]
C = - 15.(- \(\dfrac{143}{105}\))
C = \(\dfrac{143}{7}\)
Tính giá trị biểu thức:
D=\(\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right).\dfrac{21}{24}\)
F= \(\dfrac{5}{6}+6\dfrac{5}{6}.\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(F=\dfrac{5}{6}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}\left(\dfrac{225}{20}-\dfrac{37}{4}\right):\dfrac{25}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}\)
\(F=\dfrac{371}{150}\)
\(D=\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right)\times\dfrac{21}{24}\)
\(D=\left(\dfrac{272}{30}-\dfrac{168}{30}+\dfrac{186}{30}\right)\times\dfrac{21}{24}\)
\(D=\dfrac{290}{30}\times\dfrac{21}{24}\)
\(D=\dfrac{29}{3}\times\dfrac{7}{8}\)
\(D=\dfrac{203}{24}\)
Tính nhanh
a, S= \(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\) + \(\dfrac{1}{99}\) + \(\dfrac{1}{143}\)
b, A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\)
c, H =\(\dfrac{4047991-2010x2009}{4050000-2011x2009}\)
d, T = \(\dfrac{2009x20010+2000}{2011x2010-2020}\)
e, P = \(\dfrac{7589-80,5x69,3}{7485,05-79x69,3}\)
f, B = 5,1 x 42,2 + 1,7 x 448 x 3 - 0,15 x 700
Giúp mình với
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
Tính A =\(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}+\dfrac{1}{66}+\dfrac{1}{78}\)
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)
Rút gọn rồi tính.
a) \(\dfrac{4}{24}+\dfrac{7}{6}\) b) \(\dfrac{10}{15}-\dfrac{1}{3}\) c) \(\dfrac{21}{28}-\dfrac{1}{4}\) d) \(\dfrac{35}{40}+\dfrac{5}{8}\)
a) \(\dfrac{4}{24}+\dfrac{7}{6}=\dfrac{4}{24}+\dfrac{28}{24}=\dfrac{4+28}{24}=\dfrac{32}{24}=\dfrac{4}{3}\)
b) \(\dfrac{10}{15}-\dfrac{1}{3}=\dfrac{10}{15}-\dfrac{5}{15}=\dfrac{10-5}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c) \(\dfrac{21}{28}-\dfrac{1}{4}=\dfrac{21}{28}-\dfrac{7}{28}=\dfrac{21-7}{28}=\dfrac{14}{28}=\dfrac{1}{2}\)
d) \(\dfrac{35}{40}+\dfrac{5}{8}=\dfrac{35}{40}+\dfrac{25}{40}=\dfrac{35+25}{40}=\dfrac{60}{40}=\dfrac{3}{2}\)
\(a)\dfrac{4}{24}=\dfrac{1}{6} \\ \dfrac{1}{6}+\dfrac{7}{6}\\ =\dfrac{8}{6}=\dfrac{4}{3}\\ b)\dfrac{10}{15}=\dfrac{2}{3}-\dfrac{1}{3}\\ =\dfrac{1}{3}\\ c)\dfrac{21}{28}=\dfrac{3}{4}\\ \dfrac{3}{4}-\dfrac{1}{4}\\ =\dfrac{2}{4}=\dfrac{1}{2}\\ d)\dfrac{35}{40}=\dfrac{7}{8}\\ \dfrac{7}{8}+\dfrac{5}{8}\\ =\dfrac{12}{8}=\dfrac{3}{2}\)
Cho M= \(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{105}+\dfrac{1}{120}\). Chứng minh rằng: \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)