Giải phương trình: \(4x^2\) - 12 + 5 = 0
giải các phương trình:
(3 - x)^2 - 12 + 4x = 0
(4x - 5)^2 - 2 (16x^2 - 25) = 0
GIÚP MK VỚI :<<
\(a.\left(3-x\right)^2-12+4x=0\)
\(\Rightarrow\left(3-x\right)^2-4.\left(3-x\right)=0\)
\(\Rightarrow\left(3-x\right)\left(-x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\-x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
\(b.\left(4x-5\right)^2-2.\left(16x^2-25\right)=0\)
\(\Rightarrow\left(4x-5\right)^2-2.\left(4x+5\right).\left(4x-5\right)=0\)
\(\Rightarrow\left(4x-5\right)\left(4x-5-8x-10\right)=0\)
\(\Rightarrow\left(4x-5\right)\left(-4x-15\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-5=0\\-4x-15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}\)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải phương trình cos 4 x + 12 sin x . cos x - 5 = 0
giải các phương trình sau
a) x2+4x-5=0
b) x2-x-12=0
c) (2x-7)2-6(2x-7)(x-3)=0
`a,x^2 +4x-5=0`
`<=> x^2-x+5x-5=0`
`<=> x(x-1)+5(x-1)=0`
`<=>(x-1)(x+5)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
`b, x^2 -x-12=0`
`<=> x^2 +3x-4x-12=0`
`<=>(x^2+3x)-(4x+12)=0`
`<=>x(x+3)-4(x+3)=0`
`<=>(x+3)(x-4)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
`c, (2x-7)^2 - 6(2x-7)(x-3)=0`
`<=>(2x-7)(2x-7 -6x+18)=0`
`<=>(2x-7) ( -4x+11)=0`
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\-4x+11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\-4x=-11\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{11}{4}\end{matrix}\right.\)
a: =>(x+5)(x-1)=0
=>x=1 hoặc x=-5
b: =>(x-4)(x+3)=0
=>x=4 hoặc x=-3
c: =>(2x-7)(2x-7-6x+18)=0
=>(2x-7)(-4x+11)=0
=>x=11/4 hoặc x=7/2
Giải các phương trình sau:
a) 7 − x 2 4 − x + 5 2 = 0 ;
b) 4 x 2 + x − 1 2 − 2 x + 1 2 = 0 ;
c) x 3 + 1 = x + 1 2 − x ;
d) x 2 − 4 x − 5 = 0 .
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
Giải phương trình:\(3x^4-2x^3-52x^2-4x+12=0\)
- Với \(x=0\) không phải nghiệm
- Với \(x\ne0\) chia 2 vế cho \(x^2\)
\(\Rightarrow3\left(x^2+\dfrac{4}{x^2}\right)-2\left(x+\dfrac{2}{x}\right)-52=0\)
Đặt \(x+\dfrac{2}{x}=t\Rightarrow t^2=x^2+\dfrac{4}{x^2}+4\Rightarrow x^2+\dfrac{4}{x^2}=t^2-4\)
Pt trở thành:
\(3\left(t^2-4\right)-2t-52=0\)
\(\Leftrightarrow3t^2-2t-64=0\)
Nghiệm của pt này xấu quá
toán lớp 1 sao học ghê vậy lm đc cả x vs ^ luôn ô mai gi gứ chóp bạn nào lớp 1 mà giải đc bài này luôn ?????
1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF
giải phương trình x^4+2x^3+5x^2+4x-12=0
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x^3+3x^2+8x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^3+2x^2+x^2+2x+6x+12=0\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\\left(x+2\right)\left(x^2+x+6\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x^2+x+6=0\left(1\right)\end{cases}}\)
Giải pt ( 1 ) \(x^2+\frac{1}{2}x.2+\frac{1}{4}+\frac{23}{4}=0\)
\(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\)suy ra pt ( 1 ) vô nghiệm
Vậy pt có 2 nghiệm là x = 1 ; x = -2
x4 + 2x3 + 5x2 + 4x - 10 = 0
x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0
<=> x3(x - 1) + 3x2(x - 1) + 8x(x - 1) + 12(x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^3+3x^2+8x+12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^3+2x^2+x^2+2x+6x+10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+2\right)+\left(x^2+x+6\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x^2+x+6=0\left(1\right)\end{cases}}\)
Giải (1) \(x^2+\frac{1}{2}x.2+\frac{1}{4}+\frac{23}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\Rightarrow\text{PT}\left(1\right)\)Vô nghiệm
=> PT có 2 nghiệm: \(\hept{\begin{cases}x=1\\x=-2\end{cases}}\)