Cho \(a^3-3ab^2=5\) và \(b^3-3a^2b=10\). Tính S = \(2019a^2+2019b^2\)
Cho a^3 - 3ab^2 = 5 và b^3 - 3a^2b =10 . TÍnh S=a^2 +b^2
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
cho a^3-3ab^2=5 và b^3-3a^2b=10
Tính S=a^2+b^2
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
Giúp tôi nhé
Cho a^3 - 3ab^2 = 5 và b^3 - 3a^2b = 10
Tính S = 2016a^2 + 2016b^2
dễ thôi . bạn bình phương 2 cái họ cho đó sau đó cộng lại. tìm đc a^2 + b^2 bằng 5 thì phải ( mk nhẩm thế ) sao đó tính là xong
Cho a^3 -3ab^2 = 10 và b^3 - 3a^2b = 5. Tính: a^2 + b^2
c)-4a+2 và -4b+2
2)so sánh a và b,nếu :
a)2a+4 ≥ 2b+4
b)3a-5 ≤ 3b-5
3)cho a ≤ b,chứng minh:
a)2019a + 2020 ≤ 2019b + 2020
b)-42a - 24 ≥ -42b – 24
3)cho a > b,chứng minh:
a)3a+2 > 3b+2
b)-4a – 5< -4b – 5.
2,
a, Nếu 2a + 4 \(\ge\) 2b + 4
thì 2a \(\ge\) 2b hay a \(\ge\) b
b, Nếu 3a - 5 \(\le\) 3b - 5
thì 3a \(\le\) 3b hay a \(\le\) b
3,
a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020
b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24
3,
a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2
b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5
Chúc bn học tốt!!
co a^3 -3ab^2=5 va b^3-3a^2b=10
Tinh S=a^2 +b^2
Cho \(a^3-3ab^2=5\) và \(b^3-3a^2b=10\). Tính \(M=a^2+b^2\)
Ta có \(\left(a^3-3ab^2\right)^2\) =\(a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=b^6-6a^2b^4+9a^4b^2=100\)
\(=>\left(a^3-3a^2b\right)^2-\left(b^3-3a^2b\right)^2=a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(< =>a^6+3a^4b^2=3a^2b^4+b^6=125\)
\(< =>\left(a^2+b^2\right)^3=125\)
\(=>a^2+b^2=5\)
cho a , b thỏa mãn : \(a^3-3ab^2=10\) và . \(b^3-3a^2b=5\) Tính \(P=a^2+b^2\)
Có a3-3ab2=10=>(a3-3ab2)2=100(1)
Có b3-3a2b=5=>(b3-3a2b)2=25(2)
Cộng (1) và (2)
=>(a3-3ab2)2+(b3-3a2b)2=100+25
<=>a6-6a4b2+9a2b4+b6-6a2b4+9a2b4=125
<=>a6+3a2b4+3a4b2+b6=125
<=>(a2+b2)3=125
<=>a2+b2=5
vậy a2+b2=5
Cho \(a^3-3ab^2=5\)và \(b^3-3a^2b=10\). Tính \(S=a^2+b^2\)
Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)
\(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)
\(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)
\(=5^2+10^2\)
\(=125\)
\(\Rightarrow S^3=125\)
\(\Rightarrow S=5\)