Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Phạm Tiến
Xem chi tiết
soyeon_Tiểubàng giải
27 tháng 10 2016 lúc 12:57

Bài 1: Ta có:

a + b = a.b => a = a.b - b = b.(a - 1) (1)

=> a : b = a - 1 = a + b

=> b = -1

Thay b = -1 vào (1) ta có: a = -1.(a - 1) = -a + 1

=> a + a = 1 = 2a

\(\Rightarrow a=\frac{1}{2}\)

Vậy \(a=\frac{1}{2};b=-1\)

b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)

=> (1 - 2y).x = 40

\(\Rightarrow40⋮1-2y\)

Mà 1 - 2y là số lẻ \(\Rightarrow1-2y\in\left\{1;-1;5;-5\right\}\)

Ta có bảng sau:

1 - 2y1-15-5
x40-408-8
y01-23

 

Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (40;0) ; (-40;1) ; (8;-2) ; (-8;3)

 

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
19 tháng 9 2023 lúc 20:10

a)      Các điểm A,B,C trong Hình 8 biểu diễn lần lượt các số hữu tỉ: \(\frac{{ - 7}}{4};\,\frac{3}{4};\,\frac{5}{4}.\)

b)      Ta có: \(1\frac{1}{5} = \frac{6}{5};\,\,\, - 0,8 = \frac{{ - 8}}{{10}} = \frac{{ - 4}}{5}.\)

Vậy ta biểu diễn các số hữu tỉ \(\frac{{ - 2}}{5};\,1\frac{1}{5};\,\frac{3}{5};\, - 0,8\) trên trục số như sau:

Trần Hoài Bão
Xem chi tiết
tran thanh minh
5 tháng 7 2015 lúc 6:41

2(a+b+c)=\(\frac{5}{2}+\frac{9}{4}+\frac{-5}{4}=3\frac{1}{2}\)

suy ra a+b+c\(=3\frac{1}{2}:2=1\frac{3}{4}\)

suy ra c\(=1\frac{3}{4}-\frac{5}{2}=\frac{-3}{4}\)

suy ra a\(=1\frac{3}{4}-\frac{9}{4}=\frac{-1}{2}\)

suy ra b\(=1\frac{3}{4}-\frac{-5}{4}=3\)

có chết tao cũng không k...
Xem chi tiết
lucky tomato
Xem chi tiết
Nguyễn Hoàng Oanh
1 tháng 4 2020 lúc 13:53

\({ x^3\over x^4-1 }={{ a(x+1)+b(x-1)}\over{x^2-1}} +{{cx+d}\over{x^2+1}}\)=\({(ax+a+bx-b)(x^2 +1) +(cx+d) (x^2-1)}\over{x^4-1}\) =\({ax^3 +ax^2+bx^3-bx^2+ax+a+bx-b +cx^3 +dx^2-cx-d}\over{x^4-1} \) Suy ra \(x^3=ax^3 +ax^2+bx^3-bx^2+ax+a+bx-b +cx^3 +dx^2-cx-d \) \(= x^3(a+b+c)+x^2(a-b+d)+x(a+b-c)+(a-b-d)\) Điều này chỉ xảy ra khi đồng thời : a+b+c=1; a-b+d=0; a+b-c=0; a-b-d=0 khi và chỉ khi a=0,25 ; b=0,25 ; c=0,5 ; d=0

Vậy .......

                                               

                                               

                                               

Khách vãng lai đã xóa
✰๖ۣۜŠɦαɗøω✰
1 tháng 4 2020 lúc 13:55

Biến đổi đẳng thức về dạng : 

\(\frac{x^3}{x^4-1}=\frac{\left(a+b+c\right).x^3+\left(a-b+d\right).x^2+\left(a+b-c\right).x+\left(a-b-d\right)}{x^4-1}\)

Suy ra \(\hept{\begin{cases}a+b+c=1\\a-b+d=0\\a+b-c=0\end{cases}}\)Giải ra ta được a=b=1/4 ; c = 1/2 ; d = 0 

             \(\hept{a-b-d=0}\)

( Lưu ý : Phần lưu ý này không cần phải ghi : Nối dấu ngoặc 3 ý và dấu ngoặc 1 ý làm 1  ) 

Khách vãng lai đã xóa
Nguyễn văn công
Xem chi tiết
Arima Kousei
31 tháng 5 2018 lúc 16:08

\(a)\)

Ta có : 

\(1-\frac{2}{3}=\frac{1}{3};1-\frac{4}{5}=\frac{1}{5};1-\frac{7}{8}=\frac{1}{8};1-\frac{3}{4}=\frac{1}{4}\)

\(1-\frac{9}{10}=\frac{1}{10};1-\frac{8}{9}=\frac{1}{9};1-\frac{5}{6}=\frac{1}{6};1-\frac{6}{7}=\frac{1}{7}\)

Do \(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{7}>\frac{1}{8}>\frac{1}{9}>\frac{1}{10}\)

\(\Rightarrow1-\frac{1}{3}< 1-\frac{1}{4}< 1-\frac{1}{5}< 1-\frac{1}{6}< 1-\frac{1}{7}< 1-\frac{1}{8}< 1-\frac{1}{9}< 1-\frac{1}{10}\)

\(\Rightarrow\frac{2}{3}< \frac{3}{4}< \frac{4}{5}< \frac{5}{6}< \frac{6}{7}< \frac{7}{8}< \frac{8}{9}< \frac{9}{10}\)

Nếu \(\frac{a}{b}\)là 1 số thuộc dãy trên thì số tiếp theo là : 

\(\frac{a+1}{b+1}\)

\(b)\) 

Ta có : 

\(a\left(a+2\right)=a^2+2a\)

\(b\left(a+1\right)=ab+b\)

Sorry , đến bước này mik chịu 

~ Ủng hộ nhé 

Đỗ Ngọc Hải
31 tháng 5 2018 lúc 16:01

Phần b) Ý bạn là so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+2}\)

Nguyễn văn công
31 tháng 5 2018 lúc 16:02

đúng rồi bạn

Thanh Tâm
Xem chi tiết
Sao Vậy Trời
Xem chi tiết
alibaba nguyễn
26 tháng 7 2017 lúc 14:41

a/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.c^2+b^2.c^2}{\left(b+c\right)^2.b^2.c^2}}\)

\(=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{\left(b+c\right)^2.b^2.c^2}}\)

\(=\left|\dfrac{b^2+bc+c^2}{\left(b+c\right).b.c}\right|\)

Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là số hữu tỉ

alibaba nguyễn
26 tháng 7 2017 lúc 14:47

b/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{\left(2b+c\right)^2}}\)

\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.\left(2b+c\right)^2+\left(2b+c\right)^2.b^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)

\(=\sqrt{\frac{\left(3b^2+3bc+c^2\right)^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)

\(=\left|\dfrac{3b^2+3bc+c^2}{\left(b+c\right).\left(2b+c\right).b}\right|\)

Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\) là số hữu tỉ

nguyễn Đào Quý Phú
Xem chi tiết
Phan Nghĩa
28 tháng 8 2020 lúc 12:22

bạn tham khảo nhé :  https://olm.vn/hoi-dap/detail/106812735697.html

không hiện link thì mình gửi qua tin nhắn nhé

Khách vãng lai đã xóa