Giải phương trình ẩn x sau:
\(\frac{x^2-x}{x^2-x+1}+\frac{x^2-x+2}{x^2-x-2}=1.\)
giải phương trình bậc nhất một ẩn
\(\frac{x-1}{x+1}-\frac{x^2+x-2}{x+1}=\frac{x+1}{x-1}-x-2\)
\(\frac{x-1}{x+1}-\frac{x^2+x-2}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{x-1}{x+1}-\frac{\left(x-1\right)\left(x+2\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{x-1-\left(x-1\right)\left(x+1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> \(\frac{-\left(x-1\right)\left(x+2-1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)
<=> -(x - 1) = \(\frac{x+1}{x-1}\) - x - 2
<=> 1 - x = \(\frac{x+1}{x-1}\) - x - 2
<=> 1 = \(\frac{x+1}{x-1}\) - x - 2
<=> x - 1 = x + 1 - 2(x - 1)
<=> x - 1 = -x + 3
<=> x = 3 - x - 1
<=> x = 2 - x
<=> x + x = 2
<=> 2x = 2
<=> x = 1
Giải phương trình vô tỉ sau: \(\frac{x^2}{\left(x+1-\sqrt{x+1}\right)^2}=\frac{x^2+3x+18}{\left(x+1\right)^2}\) (chú ý:làm theo pp đặt ẩn phụ)
giải phương trình chứa ẩn ở mẫu
\(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
Giải phương trình chứa ẩn ở mẫu:
\(\frac{1}{x-1}-\frac{3x^2}{x^2-1}=\frac{2x}{x^2+x+1}\)
\(ĐKXĐ:x\ne\pm1\)
\(pt\Leftrightarrow\frac{\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)\(=\frac{2x\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)\)\(=2x\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x+1-3x^2\right)\left(x^2+x+1\right)\)\(=2x\left(x^2-1\right)\)
\(\Leftrightarrow-3x^4-2x^3-x^2+2x+1\)\(=2x^3-2x\)
\(\Leftrightarrow-3x^4-4x^3-x^2+4x+1=0\)
Giải phương trình chứa ẩn ở mẫu
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
b) \(\frac{3x}{x^2+x+1}+\frac{8x}{x^2+2x+1}+\frac{x}{x^2+3x+1}=\frac{16}{5}\)
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:
\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)
\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)
\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)
\(\Leftrightarrow2t^2+t-1=6t^2-6t\)
\(\Leftrightarrow-4t^2+7t-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)
Vậy phương trình vô nghiệm.
giải phương trình ẩn chứa ở mẫu
a)\(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
b)\(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)
b) \(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{x^2-7x+12+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
.................
a) \(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)}{x^3-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\left(x^3-1\right)\left[2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)\right]=\left(x^3-1\right)\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-\left(4x^2-1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-4x^2+1=0\)
\(\Rightarrow3x=0\)
\(\Rightarrow luon-dung-voi-moi-x\)
nhầm phải là
3x=0
=>không có giá trị x thỏa mãn yêu cầu
1.Nêu cách giải phương trình chứa ẩn ở mẩu?
2. Giải phương trình:
\(\frac{x+2}{x}=\frac{2x+3}{2\left(x-2\right)}\)
1, Các bước giải phương trình chứa ẩn ở mẫu:
Bước 1: Tìm ĐKXĐ của phương trình
Bước 2: Quy đồng và khử mẫu phương trình
Bước 3: Giải phương trình đã khử mẫu
Bước 4: Đối chiếu nghiệm với ĐKXĐ
2, Bạn kiểm tra lại đề
Câu 2 đề đúng mà? Giải PT chứa ẩn ở mẫu đó.
mình test thử xem nào
\(\frac{x+2}{x}=\frac{2x+3}{2\left(x-2\right)}\left(đkxđ:x\ne0;2\right)\)
\(< =>\frac{\left(x+2\right)\left(2x-4\right)}{x\left(2x-4\right)}=\frac{x\left(2x+3\right)}{x\left(2x-4\right)}\)
\(< =>\left(x+2\right)\left(2x-4\right)=x\left(2x+3\right)\)
\(< =>2x^2-4x+4x-8=2x^2+3x\)
\(< =>\left(2x^2-8\right)-\left(2x^2+3x\right)=0\)
\(< =>-8-3x=0\)
\(< =>-8=3x< =>x=\frac{-8}{3}\left(tmđk\right)\)
Vậy nghiệm của pt là \(-\frac{8}{3}\)
Giải phương trình ẩn ở mẫu
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
x - 3 / x -2 - x - 2 /x -4 =16/5
x - 3 / x - 2 - x - 2 /x -4 - 16/5 = 0
-16^2 +81x -88/ 5(x-2)(x-4) = 0
-16^2 +81x -81 =0
16^2 -81x +88 =0
x = -(-81) ± √(-81)^2 -4 *16 *88 /2*16
x = 81±√ 929/32
x1 =81+√929/32
x-2 =81-√929/32
Mọi người giúp mình bài này với
Giải các bất phương trình sau (ưu tiên giải bằng phương pháp đặt ẩn phụ):
a, \(4 \sqrt{x}+\frac{2}{\sqrt{x}}<2 x+\frac{1}{2 x}+2\)
b, \(\frac{1}{1-x^{2}}>\frac{3 x}{\sqrt{1-x^{2}}}-1\)
c,\(\sqrt{\frac{1}{x^{2}}-\frac{3}{4}}<\frac{1}{x}-\frac{1}{2}\)
d, \(x+\frac{x}{\sqrt{x^{2}-1}}>\frac{35}{12}\)
Mình cảm ơn nhiều ạ.
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
ok đợi nấu ăn xong r làm cho
a) điều kiện x>0
khi đó
\(\left(a\right)\Leftrightarrow4\left(\sqrt{4}+\frac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)^2\)
\(\Leftrightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}>2\Leftrightarrow2x-4\sqrt{x}+1>0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< \frac{2-\sqrt{2}}{2}\\\sqrt{x}>\frac{2+\sqrt{2}}{2}\end{cases}}\)