Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hưng Tạ Việt
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
Thanh Tùng DZ
19 tháng 5 2018 lúc 16:19

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Arima Kousei
19 tháng 5 2018 lúc 16:20

Ta có : 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(đpcm\right)\)

Chúc bạn học tốt !!! 

Carthrine Nguyễn
Xem chi tiết
Ngô Tấn Đạt
31 tháng 8 2016 lúc 20:58

Đặt \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+..........+\frac{1}{200}\)

Vậy \(A>\frac{1}{200}+\frac{1}{200}+.......+\frac{1}{200}\)

\(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+......+\frac{1}{200}\\ =\frac{100}{200}\\ =\frac{1}{2}\)

Vì \(\frac{1}{2}< \frac{5}{8}\Rightarrow A>\frac{5}{8}\)

Ngô Tấn Đạt
31 tháng 8 2016 lúc 21:05

Đặt \(A=\frac{1}{101}+\frac{1}{102}+.........+\frac{1}{200}\)

\(A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\)

\(\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\\ =\frac{100}{100}\\ =1\)

Vì \(1>\frac{5}{8}\)\(\Rightarrow A>\frac{5}{8}\)

mình làm 2 cách bạn có nhận xét gì thì bình luận , hoặc hửi tin nhắn qua cho mình nhé

Carthrine Nguyễn
Xem chi tiết
soyeon_Tiểubàng giải
2 tháng 9 2016 lúc 21:16

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{175}\right)+\left(\frac{1}{176}+\frac{1}{177}+...+\frac{1}{200}\right)\)

\(>50.\frac{1}{150}+25.\frac{1}{175}+25.\frac{1}{200}\)

\(>\frac{1}{3}+\frac{1}{7}+\frac{1}{8}>\frac{1}{2}+\frac{1}{6}+\frac{1}{8}=\frac{19}{24}>\frac{15}{24}=\frac{5}{8}\left(đpcm\right)\)

 

Đéo nhắc lại
Xem chi tiết
Đỗ Thị Dung
6 tháng 5 2019 lúc 21:11

B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)

B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)\(\frac{1}{20}\)

vậy B= \(\frac{1}{20}\)

Kelly Ánh
6 tháng 5 2019 lúc 21:17

b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8

Vậy A>5/8

Nhớ k mik nha!!!!!!!!!!!!!

TRẦN ĐỨC VINH
6 tháng 5 2019 lúc 21:47

a/ Quy đồng mẫu số trong các ngoặc đơn, chúng sẽ giản ước được :\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}=\frac{1}{20}.\) 

b/  Chứng minh   A> 5/8  

\(A=(\frac{1}{101}+...\frac{1}{125})+(\frac{1}{126}+...+\frac{1}{150})+(\frac{1}{151}+...+\frac{1}{175})+\left(\frac{1}{176}+...+\frac{1}{200}\right)\ge.\) 

         \(\ge\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{12}{35}+\frac{7}{24}>\frac{24}{72}+\frac{21}{72}=\frac{45}{72}=\frac{5}{8}\)

Vũ Văn Dũng
Xem chi tiết
Amano Ichigo
Xem chi tiết
Khánh Ngọc
13 tháng 4 2019 lúc 9:18

Tham khảo ở link này bạn nhé :

https://olm.vn/hoi-dap/detail/5631756599.html

~ Study well ~

Sooya
Xem chi tiết
Nguyễn Phạm Hồng Anh
27 tháng 2 2018 lúc 12:11

Biến đổi vế trái ta có :

\(VT=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{199}+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-\) \(2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}-\) \(1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\) \(=VP\RightarrowĐPCM\)

buitranthaolinh
20 tháng 4 2018 lúc 13:28

tớ bt

đâu

Tâm Trần Hiếu
Xem chi tiết
Ác Mộng
27 tháng 6 2015 lúc 17:12

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Vậy \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}\)