cho tam giác ABC có góc A =60 độ, B=40 độ . TIa phân giác của góc cắt AB ở K. CM KB=KC
Cho tam giác ABC có A ^ = 60 ° , B ^ = 40 ° . Tia phân giác của góc C cắt cạnh AB tại K. Chứng minh KB = KC.
Cho tam giác ABC có góc A=60 độ, tia phân giác của góc B cắt AC ở M. tia phân giác của góc C cắt AB ở N. Chứng minh rằng: BN+CM=BC
Gọi H là giao điểm của NC và BM
Vẽ HK là phân giác BHC => BHK = CHK = BHC/2
Có: A + ABC + ACB = 180o
=> 60o + ABC + ACB = 180o
=> ABC + ACB = 180o - 60o = 120o
=> ABC/2 + ACB/2 = 60o
Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2
Nên HBK + HCK = 60o
=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o
=> BHK = KHC = BHC/2 = 60o
Có: BHN + BHC = 180o ( kề bù)
=> BHN + 120o = 180o
=> BHN = 180o - 120o = 60o
Xét t/g BHK và t/g BHN có:
BHK = BHN = 60o (cmt)
BH là cạnh chung
NBH = KBH (gt)
Do đó, t/g BHK = t/g BHN (g.c.g)
=> BK = BN (2 cạnh tương ứng) (1)
Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)
=> KC = MC (2 cạnh tương ứng) (2)
Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)
Gọi H là giao điểm của \(\text{NC}\) và \(\text{BM}\)
Vẽ HK là phân giác \(\widehat{BHC}\Rightarrow\widehat{BHK}=\widehat{CHK}=\dfrac{\widehat{BHC}}{2}\)
Có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow60^o+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\)
\(\Rightarrow\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=60^o\)
Mà \(\widehat{NBH}=\widehat{HBK}=\dfrac{\widehat{ABC}}{2};\widehat{KCH}=\widehat{MCH}=\dfrac{\widehat{ABC}}{2}\)
Nên \(\widehat{HBK}+\widehat{HCK}=60^o\)
\(\Rightarrow BHC=180^o-\left(HBK+HCK\right)=180^o-60^o=120^o\)
\(\Rightarrow\widehat{BHK}=\widehat{KHC}=\dfrac{\widehat{BHC}}{2}=60^o\)
Có: \(\widehat{BHN}+\widehat{BHC}=180^o\) ( kề bù)
=> BHN + 120o = 180o
=> BHN = 180o - 120o = 60o
Xét t/g BHK và t/g BHN có:
BHK = BHN = 60o (cmt)
BH là cạnh chung
NBH = KBH (gt)
Do đó, t/g BHK = t/g BHN (g.c.g)
=> BK = BN (2 cạnh tương ứng) (1)
Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)
=> KC = MC (2 cạnh tương ứng) (2)
Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)
cho tam giác ABC có góc A bằng 60 độ. Tia phân giác của góc B cắt AC ở M. Tia phân giác góc C cắt AB ở N. Chứng minh rằng: BN+CM=BC
Cho tam giác ABC vuông tại A. Có góc B = 60 độ. Tia phân giác góc B cắt AC ở D. Kẻ KC vuông góc với tia BD ở K
a) Tính số đo hóc ABD, góc ACB?
b) CMR: AB=CK
c) Tam giác AKB = Tam giác KAC
d) BC = 2AB
a
gốc BAD=30*; góc ACB=30*
b
chứng minh ▲KCB=▲ABC
=>> AB=CK
c
chứng minh tương tự như câu b
d
xét ▲ABC vuông tạ A => cos60*=AB/BC
=>> BC=2AB
Cho tam giác ABC có góc A =60 độ. Tia phân giác của góc B cắt AC ở M, tia phân giác của C cắt AB ở N . Chứng minh rằng:€ BN+CM=BC
-Gọi I là giao điểm của BM và CN.
-Kẻ tia ID là tia phân giác của góc BIC.
Cho tam giác ABC có góc A =60 độ. Tia phân giác của góc B cắt AC ở M, tia phân giác của C cắt AB ở N . Chứng minh rằng: BN+CM=BC
Cho tam giác ABC có góc BAC = 40 độ. Các tia phân giác của góc B và góc C cắt nhau tại I. Các tia phân giác của góc ngoài tại B và C cắt nhau ở K. Tia BI cắt KC ở E. Tính số đo các góc BIC, BKC, BEC
cho tam giác abc vuông ở c, có góc a bằng 60 độ. Tia phân giác của góc bac cắt bc ở e. kẻ ek vuông góc với ab (k thuộc ab). rắng minh chừng:
a) tam giác ace= tam giác ake
b)ae là trung trực của ck
c)ka=kb
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Cho tam giác ABC vuông ở C, có góc A =60 độ, tia phân giác của góc BAC cắt BC ở E, kẻ EK vuông góc với AB(K thuộc AB), kẻ BD vuông góc AE(D thuộc AE).Chứng minh :
a) AK=KB.
b) AD=BC
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥K và có ˆEAK=30o)
Tương tự, có ˆEBK=30o (vì ΔABC⊥C và có ˆA=60)
ˆKEB=60o
Xét hai tam giác vuông ΔAEK và ΔKEB có:
ˆAEK=ˆKEB=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90o
⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30o (cmt) ⇒ˆABD=60o (ΔADB⊥D)
Xét hai tam giác vuông ΔABC và ΔABD có:
ABAB chung
ˆBAC=ˆABD=60o ( gt + cmt)
ˆDAB=ˆABC=30o (g.c.g)
⇒ΔABC=ΔABD
⇒AD=BC (hai cạnh tương ứng)
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30oBAC^⇒EAK^=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥KΔAEK⊥K và có ˆEAK=30oEAK^=30o)
Tương tự, có ˆEBK=30oEBK^=30o (vì ΔABC⊥CΔABC⊥C và có ˆA=60oA^=60o)
ˆKEB=60oKEB^=60o
Xét hai tam giác vuông ΔAEKΔAEK và ΔKEBΔKEB có:
ˆAEK=ˆKEB=60oAEK^=KEB^=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90oEKB^=EKA^=90o
⇒ΔAEK=ΔBEK⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30oDAB^=30o (cmt) ⇒ˆABD=60o⇒ABD^=60o (ΔADB⊥DΔADB⊥D)
Xét hai tam giác vuông ΔABCΔABC và ΔABDΔABD có:
ABAB chung
ˆBAC=ˆABD=60oBAC^=ABD^=60o ( gt + cmt)
ˆDAB=ˆABC=30oDAB^=ABC^=30o (g.c.g)
⇒ΔABC=ΔABD⇒ΔABC=ΔABD
⇒AD=BC⇒AD=BC (hai cạnh tương ứng)
Bạn tham khảo !