Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MINH KHÔI
Xem chi tiết

Với m=−1 thì PT f(x)=0 có nghiệm x=1 (chọn)

Với m≠−1 thì f(x) là đa thức bậc 2 ẩn x

f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0

⇔−m2−2m≥0⇔m(m+2)≤0

⇔−2≤m≤0

Tóm lại để f(x)=0 có nghiệm thì 

Khách vãng lai đã xóa
level max
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 lúc 16:28

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2018 lúc 11:18

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2019 lúc 8:55

Đáp án C

Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức  f ' x f x = 2 - 2 x *  

Lấy nguyên hàm 2 vế (*), ta được  ∫ d f x f x = ∫ 2 - 2 x d x

⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C  

Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó  f x = e - x 2 + 2 x  

Xét hàm số  f x = e - x 2 + 2 x  trên - ∞ ; + ∞ , có  f ' x = - 2 x + 2 = 0 ⇔ x = 1

Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0  

Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt  ⇔ 0 < m < e .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2018 lúc 10:04

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 12 2018 lúc 16:12

Đặt  Ta có 

Trên đoạn [-2;3] ta có f(x) chỉ đổi dấu khi qua điểm x=1 Do vậy trước tiên cần có x=1 là nghiệm của 

Điều kiện đủ:

+) Với m=−1

(đúng)

+) Với m = - 1 3

(đúng).

Vậy m = 1 , m = - 1 3  là các giá trị cần tìm.

Chọn đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 12 2019 lúc 3:25

Đáp án A

Annh Phươngg
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2022 lúc 23:51

\(f'\left(x\right)=2cos2x-4\left(1-2m\right)sin2x-2m\)

Phương trình \(f'\left(x\right)=0\) có nghiệm

\(\Leftrightarrow2cos2x-4\left(1-2m\right)sin2x=2m\) có nghiệm

\(\Leftrightarrow cos2x-2\left(1-2m\right)sin2x=m\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(1^2+4\left(1-2m\right)^2\ge m^2\)

\(\Leftrightarrow15m^2-16m+5\ge0\)

\(\Leftrightarrow15\left(m-\dfrac{8}{15}\right)^2+\dfrac{11}{15}\ge0\) (luôn đúng)

Vậy \(f'\left(x\right)=0\) có nghiệm với mọi m

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2018 lúc 2:51

Đáp án C

Bảng biến thiên của hàm số f(x) là

Hàm số  f x  là hàm số chẵn trên  ℝ nên đồ thị của hàm số nhận trục tung làm trục đối xứng. Do đó phương trình  f ( x ) + m = 0 có bốn nghiệm thực phân biệt khi và chỉ khi phương trình f ( x ) + m = 0 có hai nghiệm dương phân biệt hay phương trình f ( x ) = - m  có hai nghiệm dương phân biệt

⇔ 1 < - m < e 4 ⇔ - e 4 < m < - 1

 

Toanhockho
Xem chi tiết
missing you =
29 tháng 1 2022 lúc 10:42

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)