\(\frac{x^2-1}{2x^2-4x+2}\)-\(\frac{x+3}{2x+2}\)
giúp cháu zới :<<
Rút gọn biểu thức sau:
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
^ Giúp tui nhanh zới nha! ^
=[x(x-2)/2(x2+4)-2x2/(4+x2)(2-x)][x(x-2)(x+1)/x3]
={[x(x-2)(2-x)-4x2 ]/2(2-x)(4+x2)} .[x(x-2)(x+1)/x3 ]
=[-x(x2+4)/2(2-x)(4+x2)].[x(x-2)(x+1)/x3 ]
=-x.x(x-2)(x+1)/2(2-x)x3
=(x+1)/2x
Rút gọn các phân thức :
a) \(P=\frac{2}{2x+3}+\frac{3}{2x+1}-\frac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
b) \(Q=\left[\frac{x+1}{2x-1}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)
P/s : Giúp cháu nữa nha :33
a) \(P=\frac{2}{2x+3}+\frac{3}{2x+1}-\frac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{2\left(2x+1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}+\frac{3\left(2x+3\right)\left(2x-3\right)}{\left(2x+1\right)\left(2x+3\right)\left(2x-3\right)}-\frac{\left(6x+5\right)\left(2x+1\right)}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{\left(4x+2\right)\left(2x-3\right)+3\left(4x^2-9\right)-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{8x^2-8x-6+12x^2-27-12x^2-16x-5}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
\(=\frac{8x^2-24x-38}{\left(2x+3\right)\left(2x-3\right)\left(2x+1\right)}\)
Check hộ mình xem nghi nghi sai sai
b) \(Q=\left(\frac{x+1}{2x-1}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2x-1}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right).\frac{4x^2-4}{5}\)
\(=\left(\frac{2\left(x+1\right)\left(x-1\right)\left(x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}+\frac{2.3\left(2x-1\right)}{2\left(x-1\right)\left(x+1\right)\left(2x-1\right)}-\frac{\left(x+3\right)\left(2x-1\right)\left(x-1\right)}{2\left(x+1\right)\left(2x-1\right)\left(x-1\right)}\right).\frac{4x^2-4}{5}\)
\(=\frac{2\left(x+1\right)\left(x^2-1\right)+12x-6-\left(2x^2+5x-3\right)\left(x-1\right)}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{2\left(x^3+x^2-x-1\right)+12x-6-2x^3-5x^2+3x+2x^2+5x-3}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{2x^3+2x^2-2x-2+20x-2x^3-3x^2-9}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4x^2-4}{5}\)
\(=\frac{-x^2+18x-11}{2\left(2x-1\right)\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{-x^2+18x-11}{\left(2x-1\right)}.\frac{2}{5}\)
\(=\frac{-2x^2+36x-22}{5\left(2x-1\right)}\)
Thực hiện phép tính:
a) \(\frac{1}{x}-\frac{1}{x+1}\)
b)\(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}\)
d) \(\frac{2x-1}{x}-\frac{2x+5}{3x-4x^2}+\frac{2x^2+x+3}{3x-4x^2}\)
e) \(\frac{x}{2x+1}+\frac{1}{4x^2-1}-\frac{x-2}{2x-1}\)
giúp mình với mình cần gấp ! Help me ===)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)
\(a,\frac{1}{x}-\frac{1}{x+1}\)
\(=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{x+1-x}{x\left(x+1\right)}\)
\(=\frac{1}{x\left(x+1\right)}\)
\(b,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)
\(=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{x-y}{xy\left(x-y\right)}=\frac{1}{xy}\)
Thực hiện phép tính
a)) \(\frac{3}{2x}+\frac{3x+3}{2x-1}+\frac{2x^2+1}{4x^2-2x}\)
b)) \(\frac{x^3+2x}{x^3+1}+\frac{2x}{x^2-x+1}+\frac{1}{x+1}\)
c)) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}\)
Bạn nào biết làm thì giúp mình nhé. Mình tick cho nè. Thanks
mk ko biết làm
xin lỗi bn nhae
xin lỗi vì đã ko giúp được bn
chcus bn học gioi!
nhae@@@
mình không biết làm
tk nhé@@@@@@@@@@@@@@@@@@@@
LOL
hihi
a) ... \(=\frac{3\left(2x-1\right)+2x\left(3x+3\right)+2x^2+1}{2x\left(2x-1\right)}=\frac{6x-3+6x^2+6x+2x^2+1}{2x\left(2x-1\right)}\)
\(=\frac{8x^2+12x-2}{2x\left(2x-1\right)}=\frac{4x^2+6x-1}{x\left(2x-1\right)}\)(hình như hết đơn giản được rồi, kết quả tạm vậy bạn nhé!)
b) ... \(=\frac{x^3+2x+2x\left(x+1\right)+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^2+2x+1}{x^2-x+1}\)
c) ... \(=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x-2\right)\left(x+2\right)}=\frac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x-2}\)
Rút gọn các phân thức đại số sau:
A=\(\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)1
B=\(\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
C=\(\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
D=\(\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
E=\(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
Giúp mik mấy câu này vs mik đg cần gấp mik cảm ơn mng trước😘😘
Làm ngắn gọn thôi nhé :v
\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)
\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)
\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)
\(A=\frac{x+2}{x-3}\)
\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)
\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{x+2}{x-2}\)
\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{10x}{-x^2+9}\)
\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)
\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)
\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)
\(D=\frac{51x-15}{2x^3-18x}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)
\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)
\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(E=\frac{10x^2+10}{x^4-2x+1}\)
giải các pt sau
a)5X(X-2020)+X=2020
b)4(X-5)2-(2X+1)2=0
c)\(\frac{3X}{5}-\frac{2X+1}{3}=2-\frac{X-3}{15}\)
d)5X3+10X2+5X=0
e)2X3-8X=0
f)\(\frac{X^2+5}{25-X^2}=\frac{3}{X+5}+\frac{X}{X-5}\)
g)\(\frac{4}{2X-3}-\frac{4X}{9-4X^2}=\frac{1}{2X+3}\)
h)|2X-4|-15=1
i)20-3|2X+1|=17
k)|4X+2|-1,5=1
GIẢI GIÚP MÌNH NHANH VỚI NHA
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
\(a,5x\left(x-2020\right)+x=2020\)
\(< =>5x\left(x-2020\right)+x-2020=0\)
\(< =>\left(5x+1\right)\left(x-2020\right)=0\)
\(< =>\orbr{\begin{cases}5x+1=0\\x-2020=0\end{cases}}\)
\(< =>\orbr{\begin{cases}5x=-1\\x=2020\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=2020\end{cases}}}\)
\(b,4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(< =>4\left(x^2-20x+25\right)-\left(4x^2+4x+1\right)=0\)
\(< =>4x^2-80x+100-4x^2-4x-1=0\)
\(< =>-84x+99=0< =>84x=99< =>x=\frac{99}{84}\)
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
ĐK: x≠1
<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)
<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)
<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)
<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)
<=> 10x-9=2(1-x)
<=>10x-9=2-2x
<=> 10x+2x= 2+9
<=> 12x=11
<=> x= \(\frac{11}{12}\left(tm\right)\)
b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
ĐK: x≠2, x≠-2
<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0
<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0
<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0
<=> -23x-7=0
<=> -23x=7
<=> x= \(\frac{-7}{23}\left(tm\right)\)
tham khảo câu d trong
https://hoc24.vn/hoi-dap/question/919967.html
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Giải các phương trình,bất phương trình:
c,\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
d,\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
e,\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
g,\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
i,\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
k,\(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
l,\(\left(x^2-2x+1\right)-4=0\)
m,\(4x^2+4x++1=x^2\)
Xin đáy ai giúp mình đi
\(\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\left(\frac{2}{x^3}+\frac{1-x}{x}\right)\) ) ae giúp mik vs nhé mik cần gấp kết quả vs cách lm ngắn gọn nhất của bài này ạ