Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoang nha phuong
Xem chi tiết
alibaba nguyễn
10 tháng 12 2016 lúc 20:58

Để mình chứng minh là đề bạn sai nhé

Điều kiện xác định

\(\hept{\begin{cases}2x-1\ge0\\2x-3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0,5\\x\le0\end{cases}}\)vô lý

Từ điều kiện xác định đã thấy đề sai rồi

alibaba nguyễn
10 tháng 12 2016 lúc 20:46

Đề sai rồi. Kiểm tra lại đi bạn

hoang nha phuong
10 tháng 12 2016 lúc 20:54

đề mình ghi đúng rồi mà bạn . 

°𝗝𝗲𝘆シ︎°
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 23:17

3: 

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

Khánh Phan Bá Hoàng
Xem chi tiết
Nguyễn Ngân
Xem chi tiết
Trần Việt Linh
4 tháng 1 2017 lúc 12:34

\(A=5-\sqrt{x+\sqrt{x}+1}\)

ĐK: \(x\ge0\)

=> \(x+\sqrt{x}\ge0\)

=> \(x+\sqrt{x}+1\ge1\)

=> \(\sqrt{x+\sqrt{x}+1}\ge1\)

=> \(-\sqrt{x+\sqrt{x}+1}\le1\)

Do đó: \(A\le4\)

Dấu "=" xảy ra khi x=0

\(B=\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+3}{1-\sqrt{x}}\left(ĐK:x\ge0;x\ne1\right)\)

\(=\frac{3x+6\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\frac{3x+6\sqrt{x}-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3x+6\sqrt{x}-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x=0

Nguyễn Hữu Chiến
4 tháng 1 2017 lúc 12:52

a)A= \(5-\sqrt{x+\sqrt{x}+1}\). ĐKXĐ: \(x\ge0\)

Ta luôn có: \(x+\sqrt{x}\ge0\) với \(x\ge0\)

\(\Rightarrow x+\sqrt{x}+1\ge1\)

\(\Rightarrow\sqrt{x+\sqrt{x}+1}\ge1\)

\(\Rightarrow-\sqrt{x+\sqrt{x}+1}\le-1\)

\(\Rightarrow5-\sqrt{x+\sqrt{x}+1}\le4\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy GTLN của A=4 khi x=0

b) B= \(\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\). ĐKXĐ: \(x\ge0; x\ne1\)

= \(\frac{3x+6\sqrt{x}-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

= \(\frac{3x+6\sqrt{x}-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) = \(\frac{x+2\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

= \(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) = \(\frac{\sqrt{x}+3}{\sqrt{x}+2}=\frac{\left(\sqrt{x+2}\right)+1}{\sqrt{x+2}}\)

= \(\frac{\sqrt{x}+2}{\sqrt{x}+2}+\frac{1}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)

Ta luôn có: \(\sqrt{x}+2\ge2\) với \(x\ge0; x\ne1\)

\(\Rightarrow\frac{1}{\sqrt{x}+2}\le\frac{1}{2}\)

\(\Rightarrow1+\frac{1}{\sqrt{x}+2}\le\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy GTLN của B=\(\frac{3}{2}\) khi x=0

Hoang Tran
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 0:30

2.

\(x-2\sqrt{x}=\sqrt{x}(\sqrt{x}-3)+\frac{1}{4}(\sqrt{x}-3)+\frac{3}{4}(\sqrt{x}+1)\)

\(\geq \frac{3}{4}(\sqrt{x}+1)\)

\(\Rightarrow I\leq \frac{\sqrt{x}+1}{\frac{3}{4}(\sqrt{x}+1)}=\frac{4}{3}\)

Vậy $I_{\max}=\frac{4}{3}$ tại $x=9$

 

Akai Haruma
30 tháng 7 2021 lúc 0:18

1. Với $x\geq \frac{1}{2}$ thì:

\(3x+\sqrt{x}+1=(\sqrt{2x}-1)(\sqrt{\frac{9}{2}x}-1)+(1+\frac{5\sqrt{2}}{2})\sqrt{x}\)

\(\geq (1+\frac{5\sqrt{2}}{2})\sqrt{x}\)

\(\Rightarrow H=\frac{\sqrt{x}}{3x+\sqrt{x}+1}\leq \frac{\sqrt{x}}{(1+\frac{5\sqrt{2}}{2})\sqrt{x}}=\frac{1}{1+\frac{5\sqrt{2}}{2}}=\frac{5\sqrt{2}-2}{23}\)

Đây chính là $H_{\max}$. Giá trị này đạt tại $x=\frac{1}{2}$

Hoang Tran
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 0:55

Có bài ngược của bài này, bạn đăng và đã có lời giải thì chỉ cần đảo lại đáp án là được.

 

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 0:58

\(E=\sqrt{x}+\dfrac{4}{\sqrt{x}}-2=\dfrac{4\sqrt{x}}{9}+\dfrac{4}{\sqrt{x}}+\dfrac{5}{9}.\sqrt{x}-2\)

\(E\ge2\sqrt{\dfrac{16\sqrt{x}}{9\sqrt{x}}}+\dfrac{5}{9}.\sqrt{9}-2=\dfrac{7}{3}\)

\(E_{min}=\dfrac{7}{3}\) khi \(x=9\)

\(F=3\sqrt{x}+\dfrac{1}{\sqrt{x}}+1=2\sqrt{x}+\dfrac{1}{\sqrt{x}}+\sqrt{x}+1\)

\(F\ge2\sqrt{\dfrac{2\sqrt{x}}{\sqrt{x}}}+1.\sqrt{\dfrac{1}{2}}+1=\dfrac{2+5\sqrt{2}}{2}\)

\(F_{min}=\dfrac{2+5\sqrt{2}}{2}\) khi \(x=\dfrac{1}{2}\)

Nguyễn Nhã Thanh
Xem chi tiết
Tran Ngoc Diep
20 tháng 8 2017 lúc 11:50

xin lỗi,giờ mình mới học lớp 6 thôi

Cát Cát Trần
Xem chi tiết
Akai Haruma
19 tháng 10 2020 lúc 0:49

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

x^2+2=(x^2+1)+1\geq 2\sqrt{x^2+1}$

$\Rightarrow \frac{x^2+2}{\sqrt{x^2+1}}\geq \frac{2\sqrt{x^2+1}}{\sqrt{x^2+1}}=2$

Vậy GTNN của biểu thức là $2$. Giá trị này đạt được khi $x^2+1=1\Leftrightarrow x=0$

Phương Linh
Xem chi tiết
Thắng Nguyễn
25 tháng 7 2016 lúc 16:35

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

Sarah
26 tháng 7 2016 lúc 21:17

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à