2) Tìm n thuoc Z de n mu 2+13n-13n+3
Tìm n in Z để n ^ 2 + 13n -13: n+3
\(n^2+13n-13=\left(n^2+3n\right)+\left(10n+30\right)-43\\ =n\left(n+3\right)+10\left(n+3\right)-43\\ =\left(n+3\right)\left(n+10\right)-43\)
\(Để:n^2+13n-13⋮\left(n+3\right)\\ =>43⋮\left(n+3\right)\\ =>n+3\inƯ\left(43\right)=\left\{\pm1;\pm43\right\}\\ =>n\in\left\{-4;-2;-46;40\right\}\left(TMDK\right)\)
Tim n thuoc N biet(n^2+13n-13)chia het cho (n+3)
Tìm n thuộc Z để n2 + 13n -13 chia hết cho n + 3
░░░░░░███████ ]▄▄▄▄▄▄▄▃
▂▄▅█████████▅▄▃▂
I███████████████████].
◥⊙▲⊙▲⊙▲⊙▲⊙▲⊙▲⊙◤…
──────▄▌▐▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▌
───▄▄██▌█ ░Xe chở 100000000 đến đây..
▄▄▄▌▐██▌█ ░░░░░░ ░░░░░░░░░ ░░░░░░░▐\.
███████▌█▄▄▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▌ \.
▀❍▀▀▀▀▀▀▀❍❍▀▀▀▀ ▀▀▀▀▀▀▀▀▀▀▀❍❍ ▀▀.
hello
Tìm n thuộc Z để n2 +13n - 13 chia hết cho n + 3
n2+13-13 chia hết cho n+3
=> n2-32+32 chia het cho n+3
=> (n+3)(n-3)+9 chia het cho n+3
Vi (n+3)(n-3) chia het cho n+3 nen 9 chia het cho n+3
=> n+3 thuoc{+1;-1;+3;-3;+9;-9}
=> n thuoc {-2;-4;0;-6;6;-12}
Tìm n thuộc Z để n2 +13n - 13 chia hết cho n + 3
Trả lời:
n2 + 13 - 13 \(⋮\)n + 3
\(\Rightarrow\)n2 - 32 + 32 \(⋮\)n + 3
\(\Rightarrow\)( n + 3 ) ( n - 3 ) + 9 \(⋮\)n + 3
Vì ( n + 3 ) ( n - 3 ) \(⋮\)chia hết cho n + 3 nên 9 \(⋮\)n + 3
\(\Rightarrow n+3\in\left(+1;-1;+3;-3;+9;-9\right)\)
\(\Rightarrow n\in\left\{-2;-4;0;-6;6;-12\right\}\)
\(⋮\)
\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)
\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)
\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)
ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3
và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6
tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy
còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé
=> chia hết cho 6
Tìm n\(\varepsilon\)Z để n\(^2\)+13n chia hết n+3
\(n^2+13n=n^2+6n+7n+9-9=\left(n^2+6n+9\right)+\left(7n-9\right)\)
\(=\left(n^2+3n+3n+9\right)+\left(7n-9\right)=\left[n\left(n+3\right)+3\left(n+3\right)\right]+\left(7n-9\right)=\left(n+3\right)^2+\left(7n-9\right)\)
Mà (n+3)2 chia hết cho n+3
=>7n-9 chia hết cho n+3
=>7(n+3)-30 chia hết cho n+3
=>-30 chia hết cho n+3 (vì 7(n+3) chia hết cho n+3))
=>n+3 \(\in\) Ư(-30)={-30;-15;-10;-6;-5;-3;-2;-1;;1;2;3;5;6;10;15;30}
=>n \(\in\) {-33;-18;-13;-9;.......27}
Vậy..............
n2+13n chia hết cho n+3
=>n2+3n+10n+30-30 chia hết cho n+3
=>n.(n+3)+10.(n+3)-30 chia hết cho n+3
=>(n+10).(n+3)-30 chia hết cho n+3
Mà (n+10).(n+3) chia hết cho n+3
=>30 chia hết cho n+3
=>n+3\(\in\){-30;-15;-10;-6;-5;-3;-2;-1;1;2;3;5;6;10;15;30}
=>n\(\in\){-33;-18;-13;-9;-8;-6;-5;-4;-2;-1;0;2;3;7;12;27}
n2+13n chia hết cho n+3
=>n2+3n+10n+30-30 chia hết cho n+3
=>n.(n+3)+10.(n+3)-30 chia hết cho n+3
=>(n+10).(n+3)-30 chia hết cho n+3
Mà (n+10).(n+3) chia hết cho n+3
=>30 chia hết cho n+3
=>n+3$\in$
{-30;-15;-10;-6;-5;-3;-2;-1;1;2;3;5;6;10;15;30}
=>n$\in$
{-33;-18;-13;-9;-8;-6;-5;-4;-2;-1;0;2;3;7;12;27}
tìm các số tự nhiên n sao cho n-1 và n^5+n^4+n^3+13n^2+13n+14 đêu là các số chính phương
tìm số tự nhiên n để n-1; n5+n4+n3+13n2+13n+14 là số chính phương
tìm n để n^2 +13n-13 chia hết n+3
Ta có: n.(n + 13) - 13 chai hết n + 3
n.(n + 3) + 10n - 13 chia hết n + 3
=> 10.(n - 3) - 10 chia hết n + 3
=> 10.(n + 3 - 6) - 10 chia hết n + 3
=> 165
n^2 + 13n - 13 = n.n + 3n + 10n + 30 - 43 = n(n + 3) + 10(n + 3) - 43
Vậy n^2 + 13n - 13 chia hết cho n+3 khi và chỉ khi n+3 là ước của 43 hay n+3 thuộc {-43; -1; 1; 43}
---> n \(\in\) {-46; -4; -2; 40}