Bài 25. Tìm x để giá trị của phân thức \(\frac{2x+3}{-x+5}\)bằng \(\frac{3}{4}\)
Bài 1: Tìm giá trị của x để phân thức \(\frac{2x+2}{x^2-1}\)nhận giá trị bằng 0
Bài 2:Tìm x để giá trị của phân thức \(\frac{2x+3}{-x+5}\)bằng \(\frac{3}{4}\)
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
cho biểu thức :\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a, tìm điều kiện của biến x để giá trị của biểu thức được xác định
b, tìm giá trị của x để giá trị của biểu thức bằng 1
c, tìm giá trị của x để giá trị của x= -\(\frac{1}{2}\)
d, tìm giá trị của x để giá trị của biểu thức bằng -3
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5
b/ Gọi biểu thức là A. Rút gọn A ta được:
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)
A=1 => x-1=2 => x=3
c/ A=-1/2 <=> x-1=-1 => x=0
d/ A=-3 <=> x-1=-6 => x=-5
Cho phân thức \(\frac{x^2-10x+25}{x^2-5x}\)
a) Tìm giá trị của biến để giá trị của phân thức bằng 0.
ĐK : \(x\ne0\) và \(x\ne5\)
Rút gọn : \(\frac{x-5}{x}\); Không có giá trị nào của x để giá trị của phân thức bằng 0
b ) Tìm x để giá trị của phân thức bằng \(\frac{5}{2}.\left(x=\frac{-10}{3}\right)\)
c) Tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên .
\(\left(\frac{x-5}{x}=1-\frac{5}{x};x\in\left\{-5;-1;1\right\}\right)\)
Bài 1: Cho biểu thức C = \(\frac{x}{2x-2}+\frac{x^2+1}{2x-2x^2}\)
a. Tìm x để biểu thức có nghĩa
b.Rút gọn biểu thứ C
c. tìm giá trị của x để biểu thức có giá trị -0,5
Bài 2: Cho biểu thức A = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a. Tìm điều kiện của biến x để giá trị của biểu thức A được xác định
b.Tìm giá trị của x để A=1; A=-3
bài 1: Cho phân thức A=\(\frac{5x+5}{2x^2+2x}\)
a/ tìm giá trị của x để giá trị của phân thức A được xác định.
b/ Tìm x khi giá trị của phân thức A bằng 1.
\(a,\frac{5x+5}{2x^2+2x}=\frac{5x+5}{2x\left(x+1\right)}\)XÁc định
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}2x\ne0\\x+1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
\(\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=1\)
\(\Rightarrow\frac{5}{2x}=1\)
\(\Rightarrow2x=5\Rightarrow x=2,5\)
cho phân thức:
\(\frac{x^2-10x+25}{x^2-5x}\)
a, tìm giá trị của x để phân thức bằng 0
b, tìm x để giá trị của phân thức bằng \(\frac{5}{2}\)
c, tìm x nguyên để phân thức có giá trị nguyên
Bài 1: Cho biểu thức: A=\(\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
a) Rút gọn biểu thức A
b) TÍnh giá trị biểu thức A, với x=\(\frac{-1}{2}\)
c) Tìm giá trị của x để A<0
Bài 2: Cho phân thức \(\frac{2x^2-4x+8}{x^3+8}\)
a) Với điều kiện nào của x thì giá trị của phân thức xác định
b) Hãy rút gọn phân thức
c) Tính giá trị của phân thức tại x=2
d) Tìm giá trị của x để giá trị của phân thức bằng 2
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
Tìm giá trị của x để phân thức sau có giá trị bằng 0:
\(\frac{x^3+x^2-x-1}{x^3+2x-5}\)
\(\frac{x^3+x^2-x-1}{x^3+2x-5}\)
\(\Leftrightarrow\frac{x^3+x^2-x-1}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x^2-1^2\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)\left(x+1\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2\left(x-1\right)}{x^3+2x-5}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-1\right)=0\)
\(\Leftrightarrow x=\pm1\)
Vậy \(x\in\left\{\pm1\right\}\)
\(\frac{x^3+x^2-x-1}{x^3+2x-5}=\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}\)
\(=\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}\)
Để \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\left(x^3+2x-5\ne0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=1\end{cases}\Leftrightarrow x=\pm}\)
Vậy x={-1;1}
ĐKXĐ: x3 + 2x - 5 \(\ne\) 0
Khi đó x3 + x2 - x - 1 = 0
<=> x2(x + 1) - (x + 1) = 0
<=> (x2 - 1)(x + 1) = 0
<=> (x - 1)(x+1)2 = 0 <=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}\left(TM\right)}\)
Vậy ...
Bài 2. Cho biểu thức P= \(\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm giá trị của x để P= -4
d) Tìm các giá trị nguyên của x để \(\frac{1}{P}\)nhận giá trị nguyên
e) Với x> 0, tìm giá trị nhỏ nhất của biểu thức Q= P+\(\frac{x+25}{x+5}\)
a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)
\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)
d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)
Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)
a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)
\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)
d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)
\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng nhé
e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)
\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)
Cho phân thức \(\frac{x^2-10x+25}{x^2-5x}\)
a) Tìm giá trị của x để giá trị của phân thức bằng 0
b) Tìm x để giá trị của phân thức bằng \(\frac{5}{2}\)
c) Tìm x nguyên để phân thức có giá trị nguyên
ĐKXĐ : x2-5x khác 0
<=>x.(x-5) khác 0
<=> x khác 0 và x khác 5
a)
\(\frac{x^2-10x+25}{x^2-5x}=0\Rightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\)
<=>x-5=0
<=>x=5
Mà x khác 5 nên không có x nào thỏa mãn phân thức bằng 0
b)\(\frac{x^2-10x+25}{x^2-5x}=\frac{5}{2}\Leftrightarrow\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\Leftrightarrow\frac{2.\left(x-5\right)}{2x}=\frac{5x}{2x}\)
\(\Rightarrow2\left(x-5\right)=5x\Leftrightarrow2x-10=5x\Leftrightarrow-3x=10\Leftrightarrow x=-\frac{10}{3}\)
c) \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{x-5}{x}=1-\frac{5}{x}\)
Để phân thức trên nguyên thì : 1-5/x là số nguyên
=>5/x là số nguyên
=>x thuộc Ư(5)={1;-1;5;-5}
Mà x khác 5 nên: x={1;-1;-5}
Vậy x={1;-1;-5}