Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Cầm Dương
Xem chi tiết
Hà Chí Dương
27 tháng 3 2017 lúc 12:40

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!

Nguyễn Minh Tuyền
Xem chi tiết
alibaba nguyễn
13 tháng 6 2017 lúc 13:19

Với n = 1 thì ta có: 

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

Giả sử bất đẳng thức trên đúng tới n = k hay

\(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\)

Ta cần chứng minh bất đẳng thức cũng đúng với n = k + 1.

Ta có: \(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{3k+4}\)

\(=\left(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}\right)+\left(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}\right)\)

Ta đã có: \(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\) nên ta cần chứng minh

\(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}>0\)

\(\Leftrightarrow\frac{2}{\left(3k+2\right)\left(3k+3\right)\left(3k+4\right)}>0\) đúng

Vậy theo quy nạp thì \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1\) đúng với mọi n nguyên dương.

Đào Anh Phương
30 tháng 6 2020 lúc 22:44

Cho t hỏi sao lại có đoạn \(\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{3k+4}\)tòi ra và phải c/minh nó lớn hơn 0??

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2018 lúc 7:49
chì xanh
Xem chi tiết
Nguyen Phuc
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 2 2020 lúc 23:33

Câu a làm rồi

Câu b hình như bạn nhầm đề, với dạng của dãy như vậy thì số hạng tổng quát của nó là \(n\left(3n-1\right)\) chứ ko phải \(n\left(3n+1\right)\)

\(\sum n\left(3n-1\right)=3\sum n^2-\sum n=\frac{n\left(n+1\right)\left(2n+1\right)}{2}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)}{2}\left(2n-1-1\right)=n^2\left(n+1\right)\)

Khách vãng lai đã xóa
Hoán Lê
Xem chi tiết
Minh Hiếu
12 tháng 3 2023 lúc 21:11

Gọi \(d=\left(3n-2,4n-3\right)\)

=> \(\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)

=> \(12n-8-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

=> phân số \(\dfrac{3n-2}{4n-3}\) là phân số tối giản

Kuuhaku
Xem chi tiết
Tớ Đông Đặc ATSM
3 tháng 9 2018 lúc 15:41

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n^2+n+2n+2}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n+1\right).\left(n+2\right)}\)

\(\Leftrightarrow\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{\left(n+2\right)-\left(n+1\right)}{\left(n+2\right).\left(n+1\right)}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x+1}-\frac{1}{x+2}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+2}< \frac{1}{2}\left(đpcm\right)\)