Chứng minh mọi số nguyên dương n
1,4 + 2,7 + ... + n(3n+1) = n(n +1)2
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Chứng minh \(1< \frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...+\frac{1}{3n+1}< 2\) với mọi số n là số nguyên dương
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
Chứng minh rằng vs mọi số nguyên dương n thì :
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1\)
Với n = 1 thì ta có:
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
Giả sử bất đẳng thức trên đúng tới n = k hay
\(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\)
Ta cần chứng minh bất đẳng thức cũng đúng với n = k + 1.
Ta có: \(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{3k+4}\)
\(=\left(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}\right)+\left(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}\right)\)
Ta đã có: \(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\) nên ta cần chứng minh
\(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}>0\)
\(\Leftrightarrow\frac{2}{\left(3k+2\right)\left(3k+3\right)\left(3k+4\right)}>0\) đúng
Vậy theo quy nạp thì \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1\) đúng với mọi n nguyên dương.
Cho t hỏi sao lại có đoạn \(\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{3k+4}\)tòi ra và phải c/minh nó lớn hơn 0??
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
chứng minh rằng: 33n+2+5.23n+1 chia hết cho 19, vs mọi n là số nguyên dương
Chứng minh rằng với mọi số nguyên dương n, ta có:
a)1x4 + 2x7 + ... + n(3n+1) = n(n +1)2
b)1x2 +2x5 + 3x8+ ... + n(3n+1)=n2(n+1)
Câu a làm rồi
Câu b hình như bạn nhầm đề, với dạng của dãy như vậy thì số hạng tổng quát của nó là \(n\left(3n-1\right)\) chứ ko phải \(n\left(3n+1\right)\)
\(\sum n\left(3n-1\right)=3\sum n^2-\sum n=\frac{n\left(n+1\right)\left(2n+1\right)}{2}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)}{2}\left(2n-1-1\right)=n^2\left(n+1\right)\)
chứng minh mọi số nguyên dương n thì phân số sau tối giản 3n-2/4n-3
Gọi \(d=\left(3n-2,4n-3\right)\)
=> \(\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)
=> \(12n-8-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
=> phân số \(\dfrac{3n-2}{4n-3}\) là phân số tối giản
Chứng minh rằng, với mọi số nguyên dương n ta luôn có bất đẳng thức
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n^2+3n+2}< \frac{1}{2}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n^2+n+2n+2}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n+1\right).\left(n+2\right)}\)
\(\Leftrightarrow\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{\left(n+2\right)-\left(n+1\right)}{\left(n+2\right).\left(n+1\right)}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x+1}-\frac{1}{x+2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+2}< \frac{1}{2}\left(đpcm\right)\)