4.Áp dụng bđt Cô-si, tìm GTLN:
a)\(y=\frac{5x}{x^2+4};x>0\)
b)\(y=\frac{x^2}{\left(x^2+3\right)^3}\)
Áp dụng BĐT Cô-si để tìm GTLN của các biểu thức :
a) \(y=\frac{x}{2}+\frac{18}{x};x>0\)
b) \(y=\frac{x}{2}+\frac{2}{x-1};x>1\)
c) \(y=\frac{3x}{2}+\frac{1}{x+1};x>-1\)
áp dụng BĐT cô-si để tìm GTNN của
\(y=\frac{x^3+1}{x^2};x>0\)
Tìm GTNN của \(M=x^2+3+\frac{1}{x^2+3}\)(Áp dụng BĐT cô-si
Áp dụng BĐT Cô - si cho hai số không âm ta được
\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)
Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)
\(\Leftrightarrow\left(x^2+3\right)^2=1\)
\(\Leftrightarrow x^4+6x^2+9=1\)
\(\Leftrightarrow x^4+6x^2+8=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)
Vậy GTNN của M là 2
Áp dụng bđt cô si tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5+2x-2y)+14
dùng bđt cô si để tìm GTLN của biểu thức sau:
B= √(a-1)(b-4) / ab (a>1,b>4)
Áp dụng bất đẳng thức cô si để
a)) tìm GTNN của y=x^2 +2/X^3
b) TÌM GTLN của y= x^2/[(x^2+2)^3]
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
cho A=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) rút gọn A
b) Tìm GTNN của A(áp dụng BĐT cô si: A+B\(\ge2\sqrt{AB}\))
Áp dụng BĐT Cô-si, chứng minh:
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}>=\sqrt{a}+\)\(\sqrt{b}\)
Áp dụng bđt Cô-si, chứng minh:
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}>=\sqrt{a}+\)\(\sqrt{b}\)
Bạn chú ý : Bài của bạn cần phải có điều kiện a,b > 0
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}=\frac{\left|a\right|}{\sqrt{b}}+\frac{\left|b\right|}{\sqrt{a}}=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\)(1)
Ta xét : \(A=\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\right)+\left(a+b\right)\)
Áp dụng bất đẳng thức Cauchy được : \(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\frac{ab\sqrt{ab}}{\sqrt{ab}}}=2\sqrt{ab}\)
\(\Rightarrow A\ge a+b+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Rightarrow\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) (2)
Từ (1) và (2) ta có đpcm