Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phuong Tran
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 2 2020 lúc 0:59

\(tana+tanb=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)

\(tana-tanb=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)

\(tan\left(\frac{\pi}{3}-3x\right)-tan\left(\frac{\pi}{3}\right)+tan2x+tanx=0\)

\(\Leftrightarrow\frac{-sin3x}{cos\left(\frac{\pi}{3}-3x\right).cos\left(\frac{\pi}{3}\right)}+\frac{sin3x}{cosx.cos2x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cosx.cos2x=\frac{1}{2}cos\left(\frac{\pi}{3}-3x\right)\end{matrix}\right.\)

Pt dưới \(\Leftrightarrow cos3x+cosx=cos\left(\frac{\pi}{3}-3x\right)\)

\(\Leftrightarrow cos3x-cos\left(\frac{\pi}{3}-3x\right)+cosx=0\)

\(\Leftrightarrow-2sin\left(\frac{\pi}{6}\right).sin\left(3x-\frac{\pi}{6}\right)+cosx=0\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=-cosx=sin\left(x-\frac{\pi}{2}\right)\)

Khách vãng lai đã xóa
Phuong Tran
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 7 2020 lúc 23:15

a/

ĐKXĐ: ...

\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)

\(\Leftrightarrow2tanx=-2\sqrt{3}\)

\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)

b/

\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)

\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)

Nguyễn Việt Lâm
19 tháng 7 2020 lúc 23:17

c/

\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)

\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)

\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)

d/

\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 7 2020 lúc 23:09

a/

\(\Leftrightarrow tanx=-tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Leftrightarrow tanx=tan\left(3x-\frac{2\pi}{3}\right)\)

\(\Rightarrow x=3x-\frac{2\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{2}\)

b/

\(tan\left(2x-15^0\right)=tanx\)

\(\Rightarrow2x-15^0=x+k180^0\)

\(\Rightarrow x=15^0+k180^0\)

Nguyễn Việt Lâm
19 tháng 7 2020 lúc 23:12

c/

ĐKXĐ: ...

\(\Leftrightarrow tan2x-2=3\left(2tan2x+1\right)\)

\(\Leftrightarrow5tan2x=-5\)

\(\Rightarrow tan2x=-1\)

\(\Rightarrow2x=-\frac{\pi}{4}+k\pi\)

\(\Rightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

d/

ĐKXĐ: ...

\(\Leftrightarrow sinx+\sqrt{3}cosx=3sinx-\sqrt{3}cosx\)

\(\Leftrightarrow2sinx=2\sqrt{3}cosx\)

\(\Rightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)

Nguyen ANhh
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:30

a/ ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

Pt tương đương:

\(\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\2cosx+\sqrt{2}=0\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\cosx=cos\left(\frac{3\pi}{4}\right)\\2x=k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=\frac{3\pi}{4}+k2\pi\left(l\right)\\x=-\frac{3\pi}{4}+k2\pi\left(l\right)\\x=\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x=\frac{k\pi}{2}\)

Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:34

b/

ĐKXĐ: \(x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

\(\Leftrightarrow tan2x.sinx+3sinx-\sqrt{3}tan2x-3\sqrt{3}=0\)

\(\Leftrightarrow sinx\left(tan2x+3\right)-\sqrt{3}\left(tan2x+3\right)=0\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\right)\left(tan2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\sqrt{3}>1\left(vn\right)\\tan2x=-3\end{matrix}\right.\)

\(\Rightarrow2x=arctan\left(-3\right)+k\pi\)

\(\Rightarrow x=\frac{arctan\left(-2\right)}{2}+\frac{k\pi}{2}\)

Nguyễn Việt Lâm
16 tháng 7 2020 lúc 17:38

c/

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x+\frac{3\pi}{4}\right)\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\frac{3\pi}{4}\ne k\pi\\2x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne-\frac{3\pi}{4}+k\pi\\x\ne\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\) \(\Rightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

Pt tương đương:

\(cos^22x=sin^2\left(x+\frac{3\pi}{4}\right)\)

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{3\pi}{2}\right)\)

\(\Leftrightarrow cos4x=-cos\left(2x+\frac{3\pi}{2}\right)=cos\left(2x+\frac{\pi}{2}\right)\)

\(\Rightarrow\left[{}\begin{matrix}4x=2x+\frac{\pi}{2}+k2\pi\\4x=-2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\left(l\right)\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)

títtt
Xem chi tiết
meme
23 tháng 8 2023 lúc 20:02

Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm lượng giác. Hãy xem xét từng phương trình một cách cụ thể:

a) Để giải phương trình tan(x) = 1, chúng ta có thể sử dụng công thức x = arctan(1) để tìm giá trị của x.

b) Để giải phương trình tan(x) = tan(55°), chúng ta có thể sử dụng công thức x = arctan(tan(55°)) để tìm giá trị của x.

c) Để giải phương trình tan(2x) = tan(π/5), chúng ta có thể sử dụng công thức 2x = arctan(tan(π/5)) để tìm giá trị của 2x, sau đó chia kết quả cho 2 để tìm giá trị của x.

d) Để giải phương trình tan(2x+π/3) = 0, chúng ta có thể sử dụng công thức 2x+π/3 = arctan(0) để tìm giá trị của 2x+π/3, sau đó giải phương trình để tìm giá trị của x.

e) Để giải phương trình cot(x-π/3) = 0, chúng ta có thể sử dụng công thức x-π/3 = arccot(0) để tìm giá trị của x-π/3, sau đó giải phương trình để tìm giá trị của x.

Hy vọng những thông tin này sẽ giúp bạn giải quyết các phương trình trên. Nếu bạn cần thêm thông tin hoặc giải thích chi tiết hơn, xin vui lòng cho biết.

Nguyễn Lê Phước Thịnh
24 tháng 8 2023 lúc 9:55

a: tan x=1

=>tan x=tan(pi/4)

=>x=pi/4+kpi

b: tan x=tan 55 độ

=>x=55 độ+k*180 độ

c: tan 2x=tan pi/5

=>2x=pi/5+kpi

=>x=pi/10+kpi/2

d: tan(2x+pi/3)=0

=>2x+pi/3=kpi

=>2x=-pi/3+kpi

=>x=-pi/6+kpi/2

e: cot(x-pi/3)=0

=>x-pi/3=pi/2+kpi

=>x=5/6pi+kpi

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2020 lúc 21:48

a/

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{2\pi}{3}-3x+k\pi\)

\(\Rightarrow4x=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}-\frac{3}{tanx}=0\)

\(\Leftrightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)

Violet
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:33

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:33

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:34

6.

\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)

\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)

\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

nga thanh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 7 2020 lúc 17:14

a/ \(\Leftrightarrow tanx.tan\frac{\pi}{9}-1=tan\frac{\pi}{90}\left(tanx+tan\frac{\pi}{9}\right)\)

\(\Leftrightarrow\frac{tanx+tan\frac{\pi}{9}}{1-tanx.tan\frac{\pi}{9}}=-\frac{1}{tan\frac{\pi}{90}}\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{9}\right)=tan\left(\frac{23\pi}{45}\right)\)

\(\Rightarrow x+\frac{\pi}{9}=\frac{23\pi}{45}+k\pi\)

\(\Rightarrow x=\frac{2\pi}{5}+k\pi\)

Do \(-2\pi< x< 2\pi\Rightarrow-2\pi< \frac{2\pi}{5}+k\pi< 2\pi\)

\(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)

\(\Rightarrow x=\left\{-\frac{8\pi}{5};-\frac{3\pi}{5};\frac{2\pi}{5};\frac{7\pi}{5};\frac{12\pi}{5}\right\}\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 17:17

b/

ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow tan^22x+1+tan^22x=7\)

\(\Leftrightarrow tan^22x=3\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)

Bạn tự tìm nghiệm thuộc khoảng đã cho nhé

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 17:22

c/ ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)

\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

Bạn tự tìm x thuộc khoảng đã cho