cho x,y thuộc Z và 5x - 3y / 19 là số nguyên . Chứng minh 4x + 9y / 19 là số nguyên
cho x;y thuộc Z , chứng minh rằng : nếu A= 5x + y chia hết cho 19 thì B= 4x - 3y chia hết cho 19
ta có 4x - 3y = 19x - 3.(5x + y)
Vì 19x chia hết cho 19;
5x + y chia hết cho 19 nên 3(5x + y) chia hết cho 19
do đó 19x - 3(5x + y) chia hết cho 19 hay 4x - 3y chia hết cho 19
vì 5x+y : 19 nên
5x:19 =>x:19=>4x:19(1)
y:19 =>3y:19 (2)
từ 1 và 2 ta có
4x-3y:19
(dấu : là chia hết)
Cho x,,y ϵ Z, chứng minh rằng :
a,Nếu A = 5x+y ⋮ 19 thì B = 4x-3y ⋮ 19 .
b,Nếu C = 4x+3y ⋮13 thì D= 7x+2y ⋮ 13
Cho x , y thuộc z Chứng minh rằng
a, Nếu M = 5x + y chia hết 19 thì N = 4x - 3y chia hết 19
Giải chi tiết giùm mình nha
Chứng minh với mọi số nguyên n biểu thức:
a) Nếu A= 5x+y chia hết cho 19 thì B= 4x-3y chia hết cho 19
b) Nếu C= 4x + 3y chia hết cho 13 thì D= 7x-2y chia hết cho 13
Giải từng bước ra giùm mk cho hiểu nhé
Đúng tick liền
1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh)
Tìm các số nguyên x,y,z thỏa mãn:2x^2+4x=19-3y^2
Cho x , y thuộc z . Chứng tỏ rằng
a, Nếu M = 5x + y chia hết 19 thì N = 4x - 3y chia hết 19
b, Nếu P = 4x + 3y chia hết 13 thì Q = 7x + 2y chia hết 13
Cho x, y thuộc Z
CM : Nếu A=5x+y Chia hết cho 19 thì B = 4x - 3y cũng chia hết cho 19
Chào bạn!
Có lẽ kì nghỉ hè đã làm phai mờ kiến thức nhỉ, gặp bài này mình cũng hơi thấy đau đầu đây
Mình sẽ chứng minh bài toán này như sau:
Theo bài , ta có:
\(A=5x+y\Leftrightarrow16A=80x+16y\)
Vì \(A⋮19\Rightarrow16A⋮19\Leftrightarrow80x+16y⋮19\)
Nhận thấy: \(80x+16y=20\left(4x\right)-3y+19y⋮19\)
Mà \(19y⋮19\Rightarrow20\left(4x\right)-3y⋮19\)
Trong đó: \(\left(20;19\right)=1\)
\(\Rightarrow4x-3y⋮19\left(\text{đ}pcm\right)\)
Cảm ơn đã theo dõi câu trả lời của mình
Cách khác nhé !
Ta có : 5x + y chia hết cho 19
<=> 3.( 5x + y ) = 15x + 3y chia hết cho 9
Lại có : 15x + 3y + ( 4x - 3y ) = 15x + 3y + 4x - 3y = 19x chia hết cho 19
Vậy 4x - 3y chia hết cho 9
cmr nếu A= 5x + y : 19
thì B = 4x - 3y : 19 vs x y thuộc z
\(5x+y⋮19\\ 7\left(5x+y\right)⋮19\\ 35x+7y⋮19\\ 16x-12y+19x+19y⋮19\\ 4\left(4x-3y\right)+19\left(x+y\right)⋮19\\ \left\{{}\begin{matrix}35x+17⋮19\\19\left(x+y\right)⋮19\\4\left(4x-3y\right)+19\left(x+y\right)=35x+17y\end{matrix}\right.\Rightarrow4\left(4x-3y\right)⋮19\\ \left(4,19\right)=1\Rightarrow4x-3y⋮19\)
Cho x,y \(\in\) Z. Chứng minh:
Nếu A=5x+y \(⋮\) 19 thì B=4x-3y\(⋮19\)