Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ayakashi
Xem chi tiết
Thắng Nguyễn
22 tháng 6 2017 lúc 19:49

Ờ thì AM-GM (là Cô si ko âm đây)

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng theo vế 3 BĐT trên ta có:

\(P+\frac{2\left(x+y+z\right)}{4}\ge x+y+z\Leftrightarrow P\ge1\)

ĐẲng thức xảy ra khi \(x=y=z=\frac{2}{3}\)

Đinh Đức Hùng
21 tháng 6 2017 lúc 13:59

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{2}{3}\)

Vậy \(P_{min}=1\) tại \(x=y=z=\frac{2}{3}\)

Ayakashi
21 tháng 6 2017 lúc 19:41

Đinh Đức Hùng ơi, cái cauchy-schwars dưới dạng engel mình chưa học, mới học cái bđt cauchy a+b >= căn ab với a,b ko âm thoy à

Xem chi tiết
Lê Tài Bảo Châu
7 tháng 1 2020 lúc 23:11

Áp dụng bđt AM-GM ta được:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)

Cộng từng vế các bất đẳng thức trên ta được

\(A+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 19:27

Cách 2:Dù dài hơn Lê Tài Bảo Châu

\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)

\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)

Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )

Cách 3:

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)

Khách vãng lai đã xóa
shitbo
7 tháng 5 2020 lúc 22:18

Áp dụng Cauchy Schwarz 

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

Đẳng thức xảy ra tại x=y=z=2/3

Khách vãng lai đã xóa
Nguyễn Thanh Hiền
Xem chi tiết
Huy Lê
Xem chi tiết
Tran Le Khanh Linh
20 tháng 8 2020 lúc 20:07

Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)

Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)

Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)

Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng

Như vậy (3),(4) đúng => (2) đúng

Từ đó suy ra \(T\ge\frac{4}{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

Khách vãng lai đã xóa
Xem chi tiết
Blue Moon
Xem chi tiết
trịnh việt nguyên
Xem chi tiết
Ngọc Nguyễn
27 tháng 2 2020 lúc 18:55

\(B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT cô si:

\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)

CMTT: \(\frac{y^2}{y+z}+\frac{y+z}{4}\ge y\)

         \(\frac{z^2}{x+z}+\frac{x+z}{4}\ge z\)

Cộng vế với vế ta được:

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}+\frac{x+y}{4}+\frac{y+z}{4}+\frac{x+z}{4}\ge x+y+z\)

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge4-\frac{2.\left(x+y+z\right)}{4}=4-2=2\)

           \(B\ge2\)

Dấu = xảy ra \(\Leftrightarrow x=y=z=\frac{4}{3}\)

Khách vãng lai đã xóa
coolkid
27 tháng 2 2020 lúc 22:16

sờ vác xơ

\(B=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)

\(=2\)

Dấu "=" xảy ra tại \(x=y=z=\frac{4}{3}\)

Khách vãng lai đã xóa
Hatsune Miku
Xem chi tiết
KAl(SO4)2·12H2O
14 tháng 3 2018 lúc 13:56

Áp dụng bất đẳng thức AM - GM t có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge4\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)(1)

Tương tự t có: \(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)(2)

                       \(\frac{x^2}{x+y}+\frac{x+y}{4}\ge z\)(3)

Từ (1); (2); (3) t có: 

\(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{z+x}+\frac{x+z}{4}\right)+\left(\frac{x^2}{x+y}+\frac{x+y}{4}\right)\ge x+y+z\)

Từ x + y + z \(\ge\) 4, t có:

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{x^2}{x+y}\ge\frac{x+y+z}{4}\)

Vậy giá trị nhỏ nhất của P là 1, đạt được khi \(x=y=z=\frac{2}{3}\)

Dương Phúc Thắng
14 tháng 3 2018 lúc 14:08

áp dụng bđt Bunyakovsky dạng phân thức ta có: P >=(x+y+z)^2/(x+y+z)=(x+y+z)/2=2

đẳng thức xảy ra <=> x=y=z=4/3

Lê Song Phương
Xem chi tiết
Xyz OLM
17 tháng 2 2022 lúc 18:11

Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)

\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)

Lại có  \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)

=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky) 

Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)

Đặt x + y = a ; y + z = b ; x + z = c

Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)

=> \(P\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x = y = z 

Khách vãng lai đã xóa
Nguyễn Tuấn Dương
16 tháng 2 2022 lúc 20:43

bài 8 : bỏ dấu hoặc  rồi tính 

a;( 17 - 299) + ( 17 - 25 + 299)

Khách vãng lai đã xóa
Hoàng Minh Ngọc
16 tháng 2 2022 lúc 20:44

bằng 20 ấn mtinh ra thế

Khách vãng lai đã xóa