\(15\left(\frac{32-2y}{15}\right)=\left(2-\frac{32-2y}{15}\right)y\)
giúp mk với nha
tìm giá trị lớn nhất của biểu thức
B=\(\frac{\left|2x+7\right|+13}{2\left|2y+7\right|+6}\)
C=\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
\(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\frac{2015}{2016}\right)^0\)
\(C = 2.(x-y)+13x^3y^2.(x-y)+15.xy.\)
\((y-x) +1\)
\(C = 2.( x- y )+13x^3y^2.(x-y)-15.xy.\)
\(( x - y )+1\)
\(C = (x - y)(2 + 13x^3y^2 - 15 ) +1\)
\(C =(x- y)(13x^3y^2 - 13 )+ 1\)
--\(\frac{41}{32}.\left(\frac{15}{8}-\frac{16}{41}\right)+\frac{15}{8}.\left(\frac{41}{32}.\frac{8}{3}\right)\)
-42/32.(15/8-16/41)+15/8.(41/32.8/3)
=-42/32.487/328+15/8.41/12
=-10227/5248+205/32
=23393/5248
a) \(\left\{{}\begin{matrix}2x+4=0\\4x+2y=-3\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\left(x-15\right).\left(y+2\right)=x.y\\\left(x+15\right).\left(y-1\right)=x.y\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x+4=y\\x+2y=-3\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=5\\\frac{2}{x}+\frac{5}{y}=7\end{matrix}\right.\) tính bằng phương pháp cộng dại số
a)
HPT \(\Leftrightarrow \left\{\begin{matrix} 4x+8y=0(1)\\ 4x+2y=-3(2)\end{matrix}\right.\)
Lấy $(1)-(2)$ ta thu được: $8y-2y=3$
$\Leftrightarrow 6y=3\Leftrightarrow y=\frac{1}{2}$
Khi đó: $x=\frac{-4y}{2}=-2y=-1$
Vậy..........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} 2x-y=-4(1)\\ 2x+4y=-6(2)\end{matrix}\right.\)
Lấy $(1)-(2)$ suy ra: $-y-4y=-4-(-6)$
$\Leftrightarrow -5y=2\Rightarrow y=\frac{-2}{5}$
$\Rightarrow x=-3-2y=\frac{-11}{5}$
c)
HPT \(\Leftrightarrow \left\{\begin{matrix} xy+2x-15y-30=xy\\ xy-x+15y-15=xy\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-15y=30\\ -x+15y=15\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x-15y=30(1)\\ -2x+30y=30(2)\end{matrix}\right.\)
Lấy $(1)+(2)$ suy ra $-15y+30y=60$
$\Leftrightarrow 15y=60\Leftrightarrow y=4$
$\Rightarrow x=15y-15=45$
Vậy.......
d)
HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{2}{x}+\frac{2}{y}=10(1)\\ \frac{2}{x}+\frac{5}{y}=7(2)\end{matrix}\right.\)
Lấy \((2)-(1)\Rightarrow \frac{3}{y}=7-10=-3\Rightarrow y=-1\)
\(\Rightarrow \frac{1}{x}=5-\frac{1}{y}=5-\frac{1}{-1}=6\Rightarrow x=\frac{1}{6}\)
Vậy........
Tìm x y z
\(\left|\frac{15}{32}-x\right|+\left|\frac{4}{25}-y\right|+\left|z-\frac{14}{31}\right|< 0\)
\(\left|\frac{15}{32}-x\right|\ge0;\left|\frac{4}{25}-y\right|\ge0;\left|z-\frac{14}{31}\right|\ge0\) với mọi x, y, z
=> \(\left|\frac{15}{32}-x\right|+\left|\frac{4}{25}-y\right|+\left|z-\frac{14}{31}\right|\ge0\)
Vì thế nên em kiểm tra lại đê bài nhé dấu \(\le\)hay dấu \(< \)
< cô Chi. Em xem lại trong sách rồi ạ
=> \(0\le\left|\frac{15}{32}-x\right|+\left|\frac{4}{25}-y\right|+\left|z-\frac{14}{31}\right|< 0\) => 0<0 vô lí
=> Không tồn tại x, y, z
a) A=\(\left(\frac{-5}{11}\right).\frac{7}{15}.\left(\frac{11}{-5}\right).\left(-30\right)\)
b) B=\(\left(-\frac{1}{6}\right).\left(\frac{-15}{19}\right).\left(\frac{38}{45}\right)\)
c) C= \(\left(\frac{-5}{9}\right).\frac{3}{11}+\left(\frac{-13}{18}\right).\frac{3}{11}\)
d) D= \(\left(2\frac{2}{15}.\frac{9}{17}.\frac{3}{32}\right):\left(\frac{-3}{27}\right)\)
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
Bài 1:
\(\frac{32}{15}:\left(-1\frac{1}{5}+1\frac{1}{3}\right)\) \(1\frac{13}{15}.0,75-\left(\frac{8}{15}+0.25\right).\frac{24}{47}\)
\(0,2.\frac{15}{36}-\left(\frac{2}{5}+\frac{2}{3}\right):1\frac{1}{5}\) \(5:\left(4\frac{25}{28}-1\frac{25}{28}\right)-1\frac{3}{8}:\left(\frac{3}{8}+\frac{9}{20}\right)\)
\(A=\left(\frac{-2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)
\(Cho\frac{x}{3}=\frac{y}{2}v\text{à }x+3y=3\)
TÍNH A?
Ta có :
\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)
\(\Rightarrow A=\left(-\frac{2}{5}.\frac{15}{8}\right)\left(x^2.x.-x^3\right)\left(y.y^2.y^2\right)\)
\(\Rightarrow A=-\frac{3}{4}.-x^6.y^5\)
\(\Rightarrow A=-\frac{3}{4}.\left(-1\right)x^6y^5\)
\(\Rightarrow A=\frac{3}{4}x^6y^5\)
Lại có :
\(\frac{x}{3}=\frac{y}{2}\)và \(x+3y=3\)
ADTCDTSBN , ta có :
\(\frac{x}{3}=\frac{y}{2}=\frac{3y}{6}=\frac{x+3y}{3+6}=\frac{3}{9}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{3}\\\frac{y}{2}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.3=1\\y=\frac{1}{3}.2=\frac{2}{3}\end{cases}}}\)
Thay \(x=1;y=\frac{2}{3}\)vào A ta được :
\(A=\frac{3}{4}.1^6.\left(\frac{2}{3}\right)^5\)
\(\Rightarrow A=\frac{3}{4}.\frac{32}{243}\)
\(\Rightarrow A=\frac{8}{81}\)
Vậy ...
ta có hai cách giải
cách 1:
gọi x/3=y/2=k
=> x=3k và y=2k
vì x+3y=3 => 3k+6k=3
=> 9k=3 => k=1/3
suy ra x=1 và y= 2/3
* Thay vào x;y vào phép tính trên rồi tự tính nhé
nếu k cho mik mik sẽ gợi ý cách còn lại
THANKS