Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 11 2018 lúc 3:03

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 8 2017 lúc 8:23

Lan Gia Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 4 2018 lúc 14:57

Đặt t = sin x − cos x = 2 sin x − π 4 .

Điều kiện  −   2 ≤ t ≤ 2 .

Ta có  t 2 = sin x − cos x 2 = sin 2 x + cos 2 x − 2 sin x cos x ⇒ sin 2 x = 1 − t 2 .

Phương trình đã cho trở thành 1 − t 2 + t = 1 ⇔ t 2 − t = 0 ⇔ t = 0 t = 1 .

Với t = 1, ta được  2 sin x − π 4 = 1 ⇔ sin x − π 4 = 1 2 .

Với t = 0, ta được  2 sin x − π 4 = 0 ⇔ sin x − π 4 = 0.

Chọn đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 12 2017 lúc 9:55

Chọn B

Bổ trợ kiến thức: Ta có thế gii bng máy tính cm tay CASIO fx-570VN PLUS như sau, đâu tiên dùng lệnh SHIFT SOLVE để xem 1 nghiệm bất kì có th có ca phương trình đã cho:

 

Đến đây ta d dàng chọn được phương án B là phương án đúng thay cho lời giải t luận nhiều phức tạp.

An Sơ Hạ
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2019 lúc 18:07

a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)

\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)

\(=3sinx-4sin^3x\)

b/

\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)

\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)

\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)

c/

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)

\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

d/

\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)

e/

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 3:27

a) y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0;π], ta có:

y' = 2cos2x

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó trên đoạn [0;π] , hàm số đạt cực đại tại π/4 , đạt cực tiểu tại 3π/4 và y C D  = y(π/4) = 1; y C T  = y(3π/4) = −1

Vậy trên R ta có:

y C Đ  = y(π/4 + kπ) = 1;

y C T  = y(3π/4 + kπ) = −1, k∈Z

b) Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn [−π;π].

y′ = − sinx – cosx

y′ = 0 ⇔ tanx = −1 ⇔ x = −π4 + kπ, k∈Z

Lập bảng biến thiên trên đoạn [−π;π]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = −π4 + k2π , đạt cực tiểu tại x = 3π4 + k2π (k∈Z) và

y C Đ  = y(−π4 + k2π) = 2 ;

y C T  = y(3π4 + k2π) = − 2  (k∈Z).

c) Ta có:


Do đó, hàm số đã cho tuần hoàn với chu kỳ π.

Ta xét hàm số y trên đoạn [0;π]:


y′ = sin2x

y′ = 0 ⇔ sin2x = 0 ⇔ x = kπ/2 (k∈Z)

Lập bảng biến thiên trên đoạn [0,π]


Từ đó, ta thấy hàm số đạt cực tiểu tại x = kπ/2 với k chẵn, đạt cực đại tại x = kπ/2 với k lẻ, và

y C T  = y(2mπ) = 0; yCT = y(2mπ) = 0;

y C Đ  = y((2m+1)π/2) = 1 (m∈Z)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 5 2017 lúc 4:21

Chọn C

Phương trình tương đương với:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2017 lúc 5:29