Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Gia Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2018 lúc 10:31

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2017 lúc 7:31

Đáp án C

TXĐ:

- Khi đó:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 6 2019 lúc 8:31

minh hy
Xem chi tiết
TFBoys
1 tháng 8 2018 lúc 21:31

1. Do \(\cos x+2>0\forall x\in R\) \(\Rightarrow\) Hàm số xác định \(\forall x\in R\)

\(y=\dfrac{\sin x+1}{\cos x+2}\)

\(\Leftrightarrow\)\(y\cos x-\sin x=1-2y\)

pt có nghiệm \(\Leftrightarrow y^2+\left(-1\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow3y^2-4y\le0\)

\(\Leftrightarrow0\le y\le\dfrac{4}{3}\)

2. \(y=\dfrac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)

\(\Leftrightarrow\left(2y-1\right)\cos x-\left(y+2\right)\sin x=3-4y\)

pt có nghiệm \(\Leftrightarrow\left(2y-1\right)^2+\left(y+2\right)^2\ge\left(3-4y\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\dfrac{2}{11}\le y\le2\)

kiểm tra giúp mình xem có sai sót gì không...

hữu thành Hồ
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2021 lúc 22:21

\(y=\dfrac{sinx+cosx}{2sinx-cosx+3}\Rightarrow2y.sinx-y.cosx+3y=sinx+cosx\)

\(\Leftrightarrow\left(1-2y\right)sinx+\left(y+1\right)cosx=3y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(1-2y\right)^2+\left(y+1\right)^2\ge9y^2\)

\(\Rightarrow2y^2+y-1\le0\)

\(\Rightarrow-1\le y\le\dfrac{1}{2}\)

Nguyễn Ngọc
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2020 lúc 22:47

a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)

\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)

Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)

b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)

\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)

\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)

c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)

\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)

\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)

nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 9 2020 lúc 0:20

8.

\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)

Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)

\(y_{min}=-2;y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\)

\(y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)