Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rosie
Xem chi tiết
Akai Haruma
28 tháng 5 2022 lúc 11:26

Lời giải:

Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:

$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$

$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)

$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)

Vậy $P_{\min}=2022$

 

Bùi Hải Đoàn
Xem chi tiết
fan FA
Xem chi tiết
Nguyễn Thành Thông
Xem chi tiết
pokemon pikachu
26 tháng 12 2017 lúc 17:14

đáp án https://goo.gl/BjYiDy

Fuiki Fuiko
Xem chi tiết
ST
2 tháng 12 2018 lúc 17:15

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=x+y+z\)

<=>\(\frac{x^2+x\left(y+z\right)}{y+z}+\frac{y^2+y\left(z+x\right)}{z+x}+\frac{z^2+z\left(x+y\right)}{x+y}=x+y+z\)

<=>\(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

<=>\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)

đoàn minh Hải
2 tháng 12 2018 lúc 17:18

 x/(y+z)+y/(x+z)+z/(x+y)=1

=>\(\frac{x^2}{\left(y+z\right)^2}\)+\(\frac{y^2}{\left(x+z\right)^2}\)+\(\frac{z^2}{\left(x+y\right)^2}\)+2(\(\frac{xy}{\left(y+z\right)\cdot\left(x+z\right)}\)+\(\frac{yz}{\left(x+z\right)\left(x+y\right)}\)+\(\frac{zx}{\left(z+y\right)\cdot\left(x+y\right)}\))=1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2019 lúc 8:43

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2017 lúc 5:41

Chọn đáp án B

Từ giả thiết ta có:

Suy ra tập hợp các điểm biểu diễn số phức z là miền mặt phẳng

(T) thỏa mãn (miền tô đậm trong hình vẽ bên

Gọi A, B là các giao điểm của đường thẳng 2 x + y + 2 = 0  và đường tròn (C’) : x - 2 2 + y + 1 2 = 25

Ta tìm được A(2; -6) và B(-2; 2)

Ta có :

Đường tròn (C) cắt miền (T) khi và chỉ khi

thảo nguyễn thị
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2018 lúc 3:25

Đáp án A.