Tìm min
\(x^2-x\sqrt{y}+x+y-2\sqrt{y}+2013\) với \(y\ge0\)
cho \(x,y,z\ge0\)t/m : x+y+z=0
Tìm min \(C=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)
https://olm.vn/hoi-dap/question/1008119.html
vào đây mà tham khảo
bạn tham khảo bài này nè
https://olm.vn/hoi-dap/question/1008119.html
Câu hỏi của Nguyễn Bá Minh - Toán lớp 9 - Học toán với OnlineMath
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Tìm GTLN của \(P=\frac{\sqrt{x}+4\sqrt{y}}{\sqrt{x}+2\sqrt{y}}\) với \(x\ge0;y\ge0;x\ne9y\)
cais này ko tìm gtln đc đâu chỉ tìm đ giá trị của P thui vì x = 2015 y rùi thay vào P sẽ thấy ngay
\(P=\frac{\sqrt{x}+4\sqrt{y}}{\sqrt{x}+2\sqrt{y}}=2-\frac{\sqrt{x}}{\sqrt{x}+2\sqrt{y}}\le2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=0\\y\ne0\end{cases}}\)
Rút gọn biểu thức
\(a.\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(b.\sqrt{41-\sqrt{160}}+\sqrt{49+\sqrt{90}}\)
\(c.\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(d.\dfrac{y+1-2\sqrt{y}}{\sqrt{y}-1}\left(y\ge0;y\ne1\right)\)
\(e.\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+2-2\sqrt{x+1}}\)
a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
=2
c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)
Cho \(x,y\ge0;x^2+y^2=1\). Tìm Min, Max: \(P=\sqrt{1+2x}+\sqrt{1+2y}\)
Áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số (1+2x, 1+2y) và (1,1) ta có:
\(P^2\le\left[\left(\sqrt{1+2x}\right)^2+\left(\sqrt{1+2y}\right)^2\right]\left(1^2+1^2\right)=2\left(2x+2y+1\right)\le2\left(x^2+1+y^2+1+1\right)=2.4=8\)
\(\Rightarrow P\le\sqrt{8}\)
Vậy GTLN của P là \(\sqrt{8}\) khi \(x=y=\dfrac{1}{2}\)
Dấu "=" khi \(\left\{{}\begin{matrix}\sqrt{1+2x}=\sqrt{1+2y}\\x,y>0\\x^2+y^2=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)
Cho biểu thức \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}};x\ge0,y\ge0,x\ne y\)
Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào x, y
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1
Cho các số \(x,y,z\ge0\)thỏa mãn \(x+y+z=1\)
TÌM MIN CỦA \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
cho M=\(\frac{2\sqrt{y}}{x-y}+\frac{1}{\sqrt{x}-\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}\)với \(x\ge0,y\ge0,x\ne y\)
1.Rút gọn biểu thức M
2.Tìm x= 4y và M= 1
\(M=\frac{2\sqrt{y}}{x-y}+\frac{\sqrt{x}+\sqrt{y}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{x-y}=\frac{2\sqrt{y}+\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}}{x-y}=\frac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{2}{\sqrt{x}-\sqrt{y}}\)
b/ Khi \(x=4y\) và M=1
\(\Leftrightarrow\frac{2}{\sqrt{4y}-\sqrt{y}}=1\Leftrightarrow\frac{2}{2\sqrt{y}-\sqrt{y}}=1\Leftrightarrow\frac{2}{\sqrt{y}}=1\)
\(\Leftrightarrow\sqrt{y}=2\Rightarrow y=4\Rightarrow x=16\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222