Tìm tỉ số \(\frac{a+b}{b+c}\)biết rằng \(\frac{b}{a}\)=2 và \(\frac{c}{d}\)=3
1:cho \(\frac{a}{b}=\frac{c}{d}\)\(a,b,c,d\ne0,a\ne+_-b,a\ne+_-d\)
chứng minh rằng \(\frac{a+b}{b}=\frac{c+d}{d}\);\(\frac{a}{a-b}=\frac{c}{c-d}\)
2,biết rằng các cạnh tam giác tỉ lệ với các số 3,4,5 và chu vi tam giác là 36 cm.tính độ dài cac scanhj của tam giác đó
3,tìm a,b,c,d biết rằng a:b:c:d=3:4:5;6 và a+b+C+d=3,6
4,tìm x,y,z biết \(\frac{x}{3}=\frac{y}{2};\frac{x}{5}=\frac{z}{7}\)và x+y+z=184
1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm
3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)
=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2
4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
1. Tìm các số a,b,c,d biết rằng:
a:b:c:d=2:3:4:5và a+b+c+d = -42
2. Tìm các số a,b,c,biết rằng :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+ 2b-3c =-20
3. Tìm các số a,b,c biết rằng :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và \(a^2-b^2+2c^2=108\)
giúp mình các bn nhé
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8
a) TÌM TỈ SỐ \(\frac{a+b}{b+c}\)BIẾT RẰNG \(\frac{b}{a}=2\)VÀ\(\frac{c}{b}=3\)
Ta có : \(\frac{b}{a}=2\Leftrightarrow b=2a\)và \(\frac{c}{b}=3\Leftrightarrow c=3b=3\cdot2a=6a\)
Do đó \(\frac{a+b}{b+c}=\frac{a+2a}{2a+6a}=\frac{3a}{8a}=\frac{3}{8}\)
Vậy \(\frac{a+b}{b+c}=\frac{3}{8}\)
tìm tỉ số \(\frac{a+b}{b+c}\)biết rằng \(\frac{b}{a}\)=2 và \(\frac{c}{b}\)=3
Với \(b+c;a;c\ne0\)
=> Khi \(\frac{b}{a}=2\Rightarrow b=2a;\)
Khi\(\frac{c}{b}=3\Rightarrow c=3b\)
Khi đó \(\frac{a+b}{b+c}=\frac{a+2a}{b+3b}=\frac{3a}{4b}=\frac{3a}{4.2a}=\frac{3a}{8a}=\frac{3}{8}\)
Vậy khi \(\frac{b}{a}=2;\frac{c}{b}=3\)thì \(\frac{a+b}{b+c}=\frac{3}{8}\)
\(\frac{a+b}{b+c}=\frac a b +\frac b c =\frac 1 2 + \frac 1 3 = \frac 5 6\)
1/ Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a/ \(\frac{a+b}{b}=\frac{c+d}{d}\)
b/ \(\frac{a-b}{b}=\frac{c-d}{d}\)
2/ Cho ba tỉ số bằng nhau: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\).Tìm giá trị của mỗi tỉ số đó?
3/ Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) . Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
4/ Cho 4 số: \(a_1;a_2;a_3;a_4\)thỏa mãn: \(a_2^2=a_1.a_3\)và \(a_3^2=a_2.a_4\). Chứng minh rằng: \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
\(1,\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)
\(b,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
\(3,\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(4,\) https://hoc24.vn/hoi-dap/question/157445.html
Bài 1: Tìm hai số x, y biết rằng:
\(\frac{x}{2}=\frac{y}{5}\) và xy = 10
Bài 2: Chứng minh rằng tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (a - b khác 0, c - d khác 0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\Rightarrow x.y=2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow k\in\left\{1;-1\right\}\)
k=1 thì \(\frac{x}{2}=\frac{y}{5}=1\Rightarrow x=2;y=5\)
k=-1 thì \(\frac{x}{2}=\frac{y}{5}=-1\Rightarrow x=-2;y=-5\)
tìm tỉ số \(\frac{a}{d}\)biết rằng:\(\frac{a-b}{d-c}\)=\(\frac{3}{8}\)và 8b=3c
\(\frac{a-b}{d-c}=\frac{3}{8}\)
\(\Rightarrow8\left(a-b\right)=3\left(d-c\right)\)
\(\Leftrightarrow8a-8b=3d-3c\)
Thay 8b = 3c
\(8a-3c=3d-3c\)
\(\Leftrightarrow8a=3d\)
\(\Leftrightarrow\frac{a}{d}=\frac{3}{8}\)
1.Tìm ba số x, y, z, biết rằng
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\)và x+y-z=10
2.Tìm hai số x , y biết rằng
\(\frac{x}{2}=\frac{y}{5}\) và xy = 10
3.Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (a-b \(\ne\) 0, c-d \(\ne\)0) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
1)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)
2)
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
xy=10 <=> 2k.5k=10
<=>10k2=10
<=> k=1
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
3)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)